We examine the orbital evolution of planetesimals under the influence of Jupiter's perturbations and nebular gas drag, under the assumption that gas persisted in the asteroid region for some time after Jupiter attained its final mass. Two distinct mechanisms, associated with the 2 : 1 and 3 : 2 mean motion resonances, can excite eccentricities to high values, despite the damping effect of drag. If Jupiter's eccentricity was comparable to its present value, planetesimals can be temporarily trapped in the 2 : 1 resonance. Bodies crossing the 3 : 2 resonance can enter a region of phase space with overlapping high-order resonances. Both mechanisms can produce eccentricities greater than 0.5 for asteroid-sized planetesimals. The combination of resonant perturbations and drag causes secular decay of semimajor axes, resulting in migration of bodies from the outer to inner belt. Inclinations remain low, implying significant collisional evolution during this migration. Velocities of resonant bodies relative to the gas are highly supersonic; these would have been a source of shock waves in the solar nebula.

Mean motion resonances, gas drag, and supersonic planetesimals in the solar nebula

MARZARI, FRANCESCO;
2002

Abstract

We examine the orbital evolution of planetesimals under the influence of Jupiter's perturbations and nebular gas drag, under the assumption that gas persisted in the asteroid region for some time after Jupiter attained its final mass. Two distinct mechanisms, associated with the 2 : 1 and 3 : 2 mean motion resonances, can excite eccentricities to high values, despite the damping effect of drag. If Jupiter's eccentricity was comparable to its present value, planetesimals can be temporarily trapped in the 2 : 1 resonance. Bodies crossing the 3 : 2 resonance can enter a region of phase space with overlapping high-order resonances. Both mechanisms can produce eccentricities greater than 0.5 for asteroid-sized planetesimals. The combination of resonant perturbations and drag causes secular decay of semimajor axes, resulting in migration of bodies from the outer to inner belt. Inclinations remain low, implying significant collisional evolution during this migration. Velocities of resonant bodies relative to the gas are highly supersonic; these would have been a source of shock waves in the solar nebula.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1356408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact