We present the results of a set of numerical simulations evaluating the effect of cluster galaxies on arc statistics. We perform a first set of gravitational lensing simulations using three independent projections for each of nine different galaxy clusters obtained from N-body simulations. The simulated clusters consist of dark matter only. We add a population of galaxies to each cluster, mimicking the observed luminosity function and the spatial galaxy distribution, and repeat the lensing simulations including the effects of cluster galaxies, which themselves act as individual lenses. Each galaxy is represented by a spherical Navarro, Frenk & White density profile. We consider the statistical distributions of the properties of the gravitational arcs produced by our clusters with and without galaxies. We find that the cluster galaxies do not introduce perturbations strong enough to significantly change the number of arcs and the distributions of lengths, widths, curvature radii and length-to-width ratios of long arcs. We find some changes to the distribution of short-arc properties in the presence of cluster galaxies. The differences appear in the distribution of curvature radii for arc lengths smaller than 12arcsec, while the distributions of lengths, widths and length-to-width ratios are significantly changed only for arcs shorter than 4arcsec.

Effects of cluster galaxies on arc statistics

MENEGHETTI, MASSIMO;MOSCARDINI, LAURO;TORMEN, GIUSEPPE
2000

Abstract

We present the results of a set of numerical simulations evaluating the effect of cluster galaxies on arc statistics. We perform a first set of gravitational lensing simulations using three independent projections for each of nine different galaxy clusters obtained from N-body simulations. The simulated clusters consist of dark matter only. We add a population of galaxies to each cluster, mimicking the observed luminosity function and the spatial galaxy distribution, and repeat the lensing simulations including the effects of cluster galaxies, which themselves act as individual lenses. Each galaxy is represented by a spherical Navarro, Frenk & White density profile. We consider the statistical distributions of the properties of the gravitational arcs produced by our clusters with and without galaxies. We find that the cluster galaxies do not introduce perturbations strong enough to significantly change the number of arcs and the distributions of lengths, widths, curvature radii and length-to-width ratios of long arcs. We find some changes to the distribution of short-arc properties in the presence of cluster galaxies. The differences appear in the distribution of curvature radii for arc lengths smaller than 12arcsec, while the distributions of lengths, widths and length-to-width ratios are significantly changed only for arcs shorter than 4arcsec.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1372371
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 78
social impact