Point estimators for a scalar parameter of interest in the presence of nuisance parameters can be defined as zero-level confidence intervals as explained in Skovgaard (1989). A natural implementation of this approach is based on estimating equations obtained from higher-order pivots for the parameter of interest. In this paper, generalising the results in Pace and Salvan (1999) outside exponential families, we take as an estimating function the modified directed likelihood. This is a higher-order pivotal quantity that can be easily computed in practice for a wide range of models, using recent advances in higher-order asymptotics (HOA, 2000). The estimators obtained from these estimating equations are a refinement of the maximum likelihood estimators, improving their small sample properties and keeping equivariance under reparameterisation. Simple explicit approximate versions of these estimators are also derived and have the form of the maximum likelihood estimator plus a function of derivatives of the loglikelihood function. Some examples and simulation studies are discussed for widely-used model classes.

### Practical point estimation from higher-order pivots

#### Abstract

Point estimators for a scalar parameter of interest in the presence of nuisance parameters can be defined as zero-level confidence intervals as explained in Skovgaard (1989). A natural implementation of this approach is based on estimating equations obtained from higher-order pivots for the parameter of interest. In this paper, generalising the results in Pace and Salvan (1999) outside exponential families, we take as an estimating function the modified directed likelihood. This is a higher-order pivotal quantity that can be easily computed in practice for a wide range of models, using recent advances in higher-order asymptotics (HOA, 2000). The estimators obtained from these estimating equations are a refinement of the maximum likelihood estimators, improving their small sample properties and keeping equivariance under reparameterisation. Simple explicit approximate versions of these estimators are also derived and have the form of the maximum likelihood estimator plus a function of derivatives of the loglikelihood function. Some examples and simulation studies are discussed for widely-used model classes.
##### Scheda breve Scheda completa Scheda completa (DC)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
##### Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11577/1373985`
• ND
• 9
• 9