This work addresses a correlation between the redox state of pyridine nucleotides and that of sulfhydryl groups of the mitochondrial membranes. Several major observations emerge: (1) Conditions leading to an oxidation of the pyridine nucleotides such as incubation with tert-butyl hydroperoxide or acetoacetate determine a decrease of total mitochondrial sulfhydryl groups. Glutathione does not follow the same pattern since it decreases in the presence of tert-butyl hydroperoxide but not in the presence of acetoacetate. In addition, only in the presence of tert-butyl hydroperoxide is the decrease of sulfhydryl groups concomitant with a membrane protein polymerization, observed by polyacrylamide gel electrophoresis. (2) Under all conditions tested, the oxidation of sulfhydryl groups is further stimulated by the presence of calcium and phosphate ions. (3) Respiratory substrates, which prevent the swelling of mitochondria, also partially prevent the decrease of sulfhydryl groups.
Influence of the redox state of pyridine nucleotides on mitochondrial sulfhydryl groups and permeability transition
BINDOLI, ALBERTO;RIGOBELLO, MARIA PIA
1997
Abstract
This work addresses a correlation between the redox state of pyridine nucleotides and that of sulfhydryl groups of the mitochondrial membranes. Several major observations emerge: (1) Conditions leading to an oxidation of the pyridine nucleotides such as incubation with tert-butyl hydroperoxide or acetoacetate determine a decrease of total mitochondrial sulfhydryl groups. Glutathione does not follow the same pattern since it decreases in the presence of tert-butyl hydroperoxide but not in the presence of acetoacetate. In addition, only in the presence of tert-butyl hydroperoxide is the decrease of sulfhydryl groups concomitant with a membrane protein polymerization, observed by polyacrylamide gel electrophoresis. (2) Under all conditions tested, the oxidation of sulfhydryl groups is further stimulated by the presence of calcium and phosphate ions. (3) Respiratory substrates, which prevent the swelling of mitochondria, also partially prevent the decrease of sulfhydryl groups.File | Dimensione | Formato | |
---|---|---|---|
Influence of the redox state of pyridine nucleotides on mitochondrial sulfhydryl groups and permeability transition_ ABB 1997.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso gratuito
Dimensione
160.84 kB
Formato
Adobe PDF
|
160.84 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.