Background: Reconstructing regulatory networks from gene expression profiles is a challenging problem of functional genomics. In microarray studies the number of samples is often very limited compared to the number of genes, thus the use of discrete data may help reducing the probability of finding random associations between genes. Results: A quantization method, based on a model of the experimental error and on a significance level able to compromise between false positive and false negative classifications, is presented, which can be used as a preliminary step in discrete reverse engineering methods. The method is tested on continuous synthetic data with two discrete reverse engineering methods: Reveal and Dynamic Bayesian Networks. Conclusion: The quantization method, evaluated in comparison with two standard methods, 5% threshold based on experimental error and rank sorting, improves the ability of Reveal and Dynamic Bayesian Networks to identify relations among genes.

A quantization method based on threshold optimization for microarray short time series.

DI CAMILLO, BARBARA;TOFFOLO, GIANNA MARIA;COBELLI, CLAUDIO
2005

Abstract

Background: Reconstructing regulatory networks from gene expression profiles is a challenging problem of functional genomics. In microarray studies the number of samples is often very limited compared to the number of genes, thus the use of discrete data may help reducing the probability of finding random associations between genes. Results: A quantization method, based on a model of the experimental error and on a significance level able to compromise between false positive and false negative classifications, is presented, which can be used as a preliminary step in discrete reverse engineering methods. The method is tested on continuous synthetic data with two discrete reverse engineering methods: Reveal and Dynamic Bayesian Networks. Conclusion: The quantization method, evaluated in comparison with two standard methods, 5% threshold based on experimental error and rank sorting, improves the ability of Reveal and Dynamic Bayesian Networks to identify relations among genes.
2005
File in questo prodotto:
File Dimensione Formato  
1471-2105-6-S4-S11.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 261.73 kB
Formato Adobe PDF
261.73 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1421149
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 25
social impact