Finding typed encodings of object-oriented into procedural or functional programming sheds light on the theoretical foundations of object-oriented languages and their specific typing constructs and techniques. This article describes a type preserving and computationally adequate interpretation of a full-fledged object calculus that supports message passing and constructs for object update and extension. The target theory is a higher-order λ-calculus with records and recursive folds/unfolds, polymorphic and recursive types, and subtyping. The interpretation specializes to calculi of nonextensible objects, and validates the expected subtyping relationships.

Typed interpretations of extensible objects

CRAFA, SILVIA
2002

Abstract

Finding typed encodings of object-oriented into procedural or functional programming sheds light on the theoretical foundations of object-oriented languages and their specific typing constructs and techniques. This article describes a type preserving and computationally adequate interpretation of a full-fledged object calculus that supports message passing and constructs for object update and extension. The target theory is a higher-order λ-calculus with records and recursive folds/unfolds, polymorphic and recursive types, and subtyping. The interpretation specializes to calculi of nonextensible objects, and validates the expected subtyping relationships.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1421716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact