Proteins, chain molecules of amino acids, behave in ways which are similar to each other yet quite distinct from standard compact polymers. We demonstrate that the Flory theorem, derived for polymer melts, holds for compact protein native state structures and is not incompatible with the existence of structured building blocks such as alpha helices and beta strands. We present a discussion on how the notion of the thickness of a polymer chain, besides being useful in describing a chain molecule in the continuum limit, plays a vital role in interpolating between conventional polymer physics and the phase of matter associated with protein structures.

Proteins and polymers

MARITAN, AMOS
2005

Abstract

Proteins, chain molecules of amino acids, behave in ways which are similar to each other yet quite distinct from standard compact polymers. We demonstrate that the Flory theorem, derived for polymer melts, holds for compact protein native state structures and is not incompatible with the existence of structured building blocks such as alpha helices and beta strands. We present a discussion on how the notion of the thickness of a polymer chain, besides being useful in describing a chain molecule in the continuum limit, plays a vital role in interpolating between conventional polymer physics and the phase of matter associated with protein structures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1425009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact