Cytoplasmic free Ca2+ (Ca2+i) was chelated to 10-20 nM in the macrophage cell line J774 either by incubation with quin2 acetoxymethyl ester in the absence of external Ca2+ (Di Virgilio, F., Lew, P.D., and Pozzan, T. (1984) Nature 310, 691-693) or by loading [ethyl-enebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) into the cytoplasm via reversible permeabilization of the plasma membrane with extracellular ATP (Steinberg, T.H., Newman, A.S., Swanson, J.A., and Silverstein, SS.C. (1987) J. Biol. Chem. 262, 8884-8888; Di Virgilio, F., Meyer, B.C., Greenberg, S., and Silverstein, S.C. (1988) J. Cell Biol. 106, 657-666). After removal of ATP from the incubation medium, ATP-permeabilized Ca2+i-depleted macrophages recovered a near-normal plasma membrane potential which slowly depolarized over a 2-4 h incubation at low [Ca2+]i. In both ATP-treated and quin2-loaded cells, depolarization of plasma membrane potential was paralleled by an increase in plasma membrane permeability to low molecular weight aqueous solutes such as eosin yellowish (Mr 692), ethidium bromide (Mr 394), and lucifer yellow (Mr 463). This increased plasma membrane permeability was not accompanied by release of the cytoplasmic marker lactic dehydrogenase for incubations up to 4 h and was likely a specific effect of Ca2+i depletion since it was not caused by: (i) the mere incubation of macrophages with extracellular EGTA, i.e. at near-normal [Ca2+]i; and (ii) loading into the cytoplasm of diethylenetriaminepentaacetic acid, a specific chelator of heavy metals with low affinity for Ca2+. Treatment of Ca2+i-depleted cells with direct (phorbol 12-myristate 13-acetate) or indirect (platelet-activating factor) activators of protein kinase C prevented the increase in plasma membrane permeability. Down-regulation of protein kinase C rendered Ca2+i-depleted macrophages refractory to the protective effect of phorbol 12-myristate 13-acetate. This report suggests a role for Ca2+i and possibly protein kinase C in the regulation of plasma membrane permeability to low molecular weight aqueous solutes.

Chelation of cytoplasmic Ca2+ increses plasma membrane permeability in murine macrophages

PIZZO, PAOLA;
1990

Abstract

Cytoplasmic free Ca2+ (Ca2+i) was chelated to 10-20 nM in the macrophage cell line J774 either by incubation with quin2 acetoxymethyl ester in the absence of external Ca2+ (Di Virgilio, F., Lew, P.D., and Pozzan, T. (1984) Nature 310, 691-693) or by loading [ethyl-enebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) into the cytoplasm via reversible permeabilization of the plasma membrane with extracellular ATP (Steinberg, T.H., Newman, A.S., Swanson, J.A., and Silverstein, SS.C. (1987) J. Biol. Chem. 262, 8884-8888; Di Virgilio, F., Meyer, B.C., Greenberg, S., and Silverstein, S.C. (1988) J. Cell Biol. 106, 657-666). After removal of ATP from the incubation medium, ATP-permeabilized Ca2+i-depleted macrophages recovered a near-normal plasma membrane potential which slowly depolarized over a 2-4 h incubation at low [Ca2+]i. In both ATP-treated and quin2-loaded cells, depolarization of plasma membrane potential was paralleled by an increase in plasma membrane permeability to low molecular weight aqueous solutes such as eosin yellowish (Mr 692), ethidium bromide (Mr 394), and lucifer yellow (Mr 463). This increased plasma membrane permeability was not accompanied by release of the cytoplasmic marker lactic dehydrogenase for incubations up to 4 h and was likely a specific effect of Ca2+i depletion since it was not caused by: (i) the mere incubation of macrophages with extracellular EGTA, i.e. at near-normal [Ca2+]i; and (ii) loading into the cytoplasm of diethylenetriaminepentaacetic acid, a specific chelator of heavy metals with low affinity for Ca2+. Treatment of Ca2+i-depleted cells with direct (phorbol 12-myristate 13-acetate) or indirect (platelet-activating factor) activators of protein kinase C prevented the increase in plasma membrane permeability. Down-regulation of protein kinase C rendered Ca2+i-depleted macrophages refractory to the protective effect of phorbol 12-myristate 13-acetate. This report suggests a role for Ca2+i and possibly protein kinase C in the regulation of plasma membrane permeability to low molecular weight aqueous solutes.
1990
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/144186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact