The skew normal model is a class of distributions that extends the Gaussian family by including a shape parameter. Despite its nice properties, this model presents some problems with the estimation of the shape parameter. In particular, for moderate sample sizes, the maximum likelihood estimator is infinite with positive probability. As a solution, we use a modified score function as an estimating equation for the shape parameter. It is proved that the resulting modified maximum likelihood estimator is always finite. For confidence intervals a quasi-likelihood approach is considered. When regression and scale parameters are present, the method is combined with maximum likelihood estimators for these parameters. Finally, also the skew t distribution is considered, which may be viewed as an extension of the skew normal. The same method is applied to this model, considering the degrees of freedom as known.

Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions

SARTORI, NICOLA
2006

Abstract

The skew normal model is a class of distributions that extends the Gaussian family by including a shape parameter. Despite its nice properties, this model presents some problems with the estimation of the shape parameter. In particular, for moderate sample sizes, the maximum likelihood estimator is infinite with positive probability. As a solution, we use a modified score function as an estimating equation for the shape parameter. It is proved that the resulting modified maximum likelihood estimator is always finite. For confidence intervals a quasi-likelihood approach is considered. When regression and scale parameters are present, the method is combined with maximum likelihood estimators for these parameters. Finally, also the skew t distribution is considered, which may be viewed as an extension of the skew normal. The same method is applied to this model, considering the degrees of freedom as known.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/147423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 78
  • OpenAlex ND
social impact