Aluminium titanate films thicker than 0.5 microns have been synthesized by sol–gel methods. The films have been deposited via repetitive dip-coating on silicon wafers and their thermal stability has been tested as a function of the annealing time and temperature. The sol–gel approach has allowed the formation of the aluminium titanate phase at temperatures (∼700 °C) much lower than those necessary for solid-state reactions (∼1450 °C). Magnesium oxide has been used to improve the thermal stability of the films at high temperatures. The behavior of samples prepared with two different Mg content, i.e. Mg0.2Al1.6Ti0.8O5 and Mg0.6Al0.8Ti1.6O5, has been studied. The films have proven to be stable at 1150 °C, for up to 90 h. X-ray photoelectron spectroscopy has shown that after firing at 500 °C the surface chemical composition of the films is in accordance with the nominal one, whilst at higher annealing temperatures some differences, attributed to diffusion effects, have been observed.

Low temperature synthesis of MgxAl2(1−x)Ti(1+x)O5 films by sol-gel processing

MARTUCCI, ALESSANDRO;ARMELAO L.
2005

Abstract

Aluminium titanate films thicker than 0.5 microns have been synthesized by sol–gel methods. The films have been deposited via repetitive dip-coating on silicon wafers and their thermal stability has been tested as a function of the annealing time and temperature. The sol–gel approach has allowed the formation of the aluminium titanate phase at temperatures (∼700 °C) much lower than those necessary for solid-state reactions (∼1450 °C). Magnesium oxide has been used to improve the thermal stability of the films at high temperatures. The behavior of samples prepared with two different Mg content, i.e. Mg0.2Al1.6Ti0.8O5 and Mg0.6Al0.8Ti1.6O5, has been studied. The films have proven to be stable at 1150 °C, for up to 90 h. X-ray photoelectron spectroscopy has shown that after firing at 500 °C the surface chemical composition of the films is in accordance with the nominal one, whilst at higher annealing temperatures some differences, attributed to diffusion effects, have been observed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1480074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 10
social impact