he single channel gating properties of human Ca(V)2.1 (P/Q-type) calcium channels were investigated with cell-attached patch-clamp recordings on HEK293 cells stably expressing these calcium channels. Human Ca(V)2.1 channels showed a complex modal gating, which is described in this and the preceding paper (Luvisetto, S., T. Fellin, M. Spagnolo, B. Hivert, RE Brust, M.M. Harpold, K.A. Stauderman, M.E. Williams, and D. Pietrobon. 2004. J Gev. Physiol. 124:445-461). Here, we report the characterization of the so-called b gating mode. A Ca(V)2.1 channel in the b gating mode shows a bell-shaped voltage dependence of the open probability and a characteristic low open probability at high positive voltages, that decreases with increasing voltage, as a consequence of both shorter mean open time and longer mean closed time. Reversible transitions of single human Ca(V)2.1 channels between the b gating mode and the mode of gating in which the channel shows the usual voltage dependence of the open probability (nb gating mode) were much more frequent (time scale of seconds) than those between the slow and fast gating modes (time scale of minutes; Luvisetto et al., 2004), and Occurred independently of whether the channel was in the fast or slow mode. We show that the b gating mode produces reversible uncoupling of inactivation in human Ca(V)2.1 channels. In fact, a Ca(V)2.1 channel in the b gating mode does not inactivate during long pulses at high positive voltages, where the same channel in both fast-nb and slow-jib gating modes inactivates relatively rapidly Moreover, a Ca(V)2.1 channel in the b gating mode shows a larger availability to open than in the rib gating modes. Regulation of the complex modal gating of human Ca(V)2.1 channels could be a potent and verb satile mechanism for the modulation of synaptic strength and plasticity as well as of neuronal excitability and other postsynaptic Ca2+-dependent processes.

Modal gating of human Ca(v)2.1 (P/Q-type) calcium channels: II. The b mode and reversible uncoupling of inactivation

PIETROBON, DANIELA
2004

Abstract

he single channel gating properties of human Ca(V)2.1 (P/Q-type) calcium channels were investigated with cell-attached patch-clamp recordings on HEK293 cells stably expressing these calcium channels. Human Ca(V)2.1 channels showed a complex modal gating, which is described in this and the preceding paper (Luvisetto, S., T. Fellin, M. Spagnolo, B. Hivert, RE Brust, M.M. Harpold, K.A. Stauderman, M.E. Williams, and D. Pietrobon. 2004. J Gev. Physiol. 124:445-461). Here, we report the characterization of the so-called b gating mode. A Ca(V)2.1 channel in the b gating mode shows a bell-shaped voltage dependence of the open probability and a characteristic low open probability at high positive voltages, that decreases with increasing voltage, as a consequence of both shorter mean open time and longer mean closed time. Reversible transitions of single human Ca(V)2.1 channels between the b gating mode and the mode of gating in which the channel shows the usual voltage dependence of the open probability (nb gating mode) were much more frequent (time scale of seconds) than those between the slow and fast gating modes (time scale of minutes; Luvisetto et al., 2004), and Occurred independently of whether the channel was in the fast or slow mode. We show that the b gating mode produces reversible uncoupling of inactivation in human Ca(V)2.1 channels. In fact, a Ca(V)2.1 channel in the b gating mode does not inactivate during long pulses at high positive voltages, where the same channel in both fast-nb and slow-jib gating modes inactivates relatively rapidly Moreover, a Ca(V)2.1 channel in the b gating mode shows a larger availability to open than in the rib gating modes. Regulation of the complex modal gating of human Ca(V)2.1 channels could be a potent and verb satile mechanism for the modulation of synaptic strength and plasticity as well as of neuronal excitability and other postsynaptic Ca2+-dependent processes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1481526
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact