Usually, multiphysics phenomena and coupled-field problems lead to computationally intensive structural analysis. Strategies to keep these problems computationally affordable are of special interest. For coupled fluid-structure problems, for instance, partitioned procedures and staggered algorithms are often preferable to direct analysis. In a previous article, a new strategy derived from the LArge Time INcrement (LATIN) method was described. This strategy was applied to the consolidation of saturated porous soils, which is a highly coupled fluid-solid problem. The feasibility of the method and the comparison of its performance with that of a standard partitioning scheme (the so-called ISPP method) was presented. Here, we go one step further and use the LATIN method to take into account the different time scales that usually arise from the different physics. We propose a multi-time-scale strategy, which improves the existing method.

A time multi-time-scale strategy for multiphysics problems:application to poroelasticity

SCHREFLER, BERNHARD
2003

Abstract

Usually, multiphysics phenomena and coupled-field problems lead to computationally intensive structural analysis. Strategies to keep these problems computationally affordable are of special interest. For coupled fluid-structure problems, for instance, partitioned procedures and staggered algorithms are often preferable to direct analysis. In a previous article, a new strategy derived from the LArge Time INcrement (LATIN) method was described. This strategy was applied to the consolidation of saturated porous soils, which is a highly coupled fluid-solid problem. The feasibility of the method and the comparison of its performance with that of a standard partitioning scheme (the so-called ISPP method) was presented. Here, we go one step further and use the LATIN method to take into account the different time scales that usually arise from the different physics. We propose a multi-time-scale strategy, which improves the existing method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1482608
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact