We consider a Hida family of nearly ordinary cusp forms on a quaternion algebra defined over a totally real number field. The aim of this work is to construct a cohomology class with coefficients in a p-adic sheaf over an Iwasawa algebra that can be specialized to cohomology classes attached to classical cusp forms in the given Hida family. Our result extends the work of Greenberg and Stevens on modular symbols attached to ordinary Hida families when the ground field is the field of rational numbers.

Lambda-adic modular symbols over totally real fields

LONGO, MATTEO
2011

Abstract

We consider a Hida family of nearly ordinary cusp forms on a quaternion algebra defined over a totally real number field. The aim of this work is to construct a cohomology class with coefficients in a p-adic sheaf over an Iwasawa algebra that can be specialized to cohomology classes attached to classical cusp forms in the given Hida family. Our result extends the work of Greenberg and Stevens on modular symbols attached to ordinary Hida families when the ground field is the field of rational numbers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/152738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact