Chicken avidin and bacterial streptavidin are proteins used in a wide variety of applications in the life sciences due to their strong affinity for biotin. A new and promising use for them is in medical pretargeting cancer treatments. However, their pharmacokinetics and immunological properties are not always optimal, thereby limiting their use in these applications. To search for potentially beneficial new candidates, we screened egg white from four different poultry species for avidin. Avidin proteins, isolated from the duck, goose, ostrich and turkey, showed a similar tetrameric structure, similar glycosylation and stability against both temperature and proteolytic activity of proteinase K as chicken avidin. Biotin-binding properties of these avidins, measured using IAsys optical biosensor, were similar to those found in avidin from the chicken. Three of these novel avidins, however, showed different immunological cross-reactivities when compared with chicken avidin. The patient sera responses to duck, goose and ostrich avidins were also lower than those observed for chicken and turkey avidins. Our findings suggest that the use of these proteins offers advantages over chicken avidin and bacterial streptavidin in pretargeting applications.
Characterization of poultry egg-white avidins and their potential as a tool in pretargeting cancer treatment
GRAPPUTO, ALESSANDRO;
2003
Abstract
Chicken avidin and bacterial streptavidin are proteins used in a wide variety of applications in the life sciences due to their strong affinity for biotin. A new and promising use for them is in medical pretargeting cancer treatments. However, their pharmacokinetics and immunological properties are not always optimal, thereby limiting their use in these applications. To search for potentially beneficial new candidates, we screened egg white from four different poultry species for avidin. Avidin proteins, isolated from the duck, goose, ostrich and turkey, showed a similar tetrameric structure, similar glycosylation and stability against both temperature and proteolytic activity of proteinase K as chicken avidin. Biotin-binding properties of these avidins, measured using IAsys optical biosensor, were similar to those found in avidin from the chicken. Three of these novel avidins, however, showed different immunological cross-reactivities when compared with chicken avidin. The patient sera responses to duck, goose and ostrich avidins were also lower than those observed for chicken and turkey avidins. Our findings suggest that the use of these proteins offers advantages over chicken avidin and bacterial streptavidin in pretargeting applications.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.