We study the properties of cosmological density perturbations in a multi-component system consisting of a scalar field and a perfect fluid. We discuss the number of degrees of freedom completely describing the system, introduce a full set of dynamical gauge-invariant equations in terms of the curvature and entropy perturbations, and display an efficient formulation of these equations as a first-order system linked by a fairly sparse matrix. Our formalism includes spatial gradients, extending previous formulations restricted to the large-scale limit, and fully accounts for the evolution of an isocurvature mode intrinsic to the scalar field. We then address the issue of the adiabatic condition, in particular demonstrating its preservation on large scales. Finally, we apply our formalism to the quintessence scenario and clearly underline the importance of initial conditions when considering late-time perturbations. In particular, we show that entropy perturbations can still be present when the quintessence field energy density becomes non-negligible.

Perturbations in cosmologies with a scalar field and a perfect fluid

BARTOLO, NICOLA;
2004

Abstract

We study the properties of cosmological density perturbations in a multi-component system consisting of a scalar field and a perfect fluid. We discuss the number of degrees of freedom completely describing the system, introduce a full set of dynamical gauge-invariant equations in terms of the curvature and entropy perturbations, and display an efficient formulation of these equations as a first-order system linked by a fairly sparse matrix. Our formalism includes spatial gradients, extending previous formulations restricted to the large-scale limit, and fully accounts for the evolution of an isocurvature mode intrinsic to the scalar field. We then address the issue of the adiabatic condition, in particular demonstrating its preservation on large scales. Finally, we apply our formalism to the quintessence scenario and clearly underline the importance of initial conditions when considering late-time perturbations. In particular, we show that entropy perturbations can still be present when the quintessence field energy density becomes non-negligible.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/153491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 44
social impact