We applied different independent techniques (electron microprobe analysis, structure refinement, and X-ray absorption spectroscopy) to unravel the possible mechanisms of Sc incorporation in the pyrope-grossular join. Samples were synthesized at elevated pressure and temperature by adding 5 wt% of Sc2O3 to selected nominal compositions (pyrope, pyrope(60)grossular(40), pyrope(20)grossular(80), and grossular). In this way, the site of incorporation was not pre-determined, and only depends on the availability of a mechanism for local charge-balance. The EXAFS spectra of the two end-members could be analyzed by a multi-shell fit procedure, whereas the chemical heterogeneity of the Sc-doped solid-solution terms prevented this approach. However, the available information allows detection of different mechanisms of incorporation, which are active as a function of the bulk composition. In pyrope, Sc mainly enters the dodecahedral X site, and the local charge balance is achieved by incorporation of Mg at the adjacent tetrahedral Z site. Local charge-balance requirements suggest that a Z site occupied by Mg bridges two X sites occupied by Sc. When the entrance of Ca provides relaxation of the averaged structure, Sc may enter all the three available cation sites via the coupled heterovalent exchange (Sc1Sc1Mg-1Si-1)-Sc-x-Sc-z-Mg-x-Si-z and the homovalent exchange (Sc1Al-1)-Sc-Y-Al-Y. In the samples of this work, there is an apparent limit in the Sc incorporation at the Y site, which is in contrast to the favored mechanism of incorporation in Sc-doped andradites. This limit can be explained in terms of relative dimensions of the structural sites when Al is the dominant Y cation. These results must be taken into account when evaluating trace-element behavior in garnets for geochemical purposes. In particular, they explain why D-Sc can be treated together with D-REE in models based on the elastic strain theory in garnets close to the pyrope composition, but deviate from the parabolic fit in grossular-rich garnets.

Site preference and local geometry of Sc in garnets: Part I. Multifarious mechanisms in the pyrope-grossular join

DALCONI, MARIA CHIARA;
2006

Abstract

We applied different independent techniques (electron microprobe analysis, structure refinement, and X-ray absorption spectroscopy) to unravel the possible mechanisms of Sc incorporation in the pyrope-grossular join. Samples were synthesized at elevated pressure and temperature by adding 5 wt% of Sc2O3 to selected nominal compositions (pyrope, pyrope(60)grossular(40), pyrope(20)grossular(80), and grossular). In this way, the site of incorporation was not pre-determined, and only depends on the availability of a mechanism for local charge-balance. The EXAFS spectra of the two end-members could be analyzed by a multi-shell fit procedure, whereas the chemical heterogeneity of the Sc-doped solid-solution terms prevented this approach. However, the available information allows detection of different mechanisms of incorporation, which are active as a function of the bulk composition. In pyrope, Sc mainly enters the dodecahedral X site, and the local charge balance is achieved by incorporation of Mg at the adjacent tetrahedral Z site. Local charge-balance requirements suggest that a Z site occupied by Mg bridges two X sites occupied by Sc. When the entrance of Ca provides relaxation of the averaged structure, Sc may enter all the three available cation sites via the coupled heterovalent exchange (Sc1Sc1Mg-1Si-1)-Sc-x-Sc-z-Mg-x-Si-z and the homovalent exchange (Sc1Al-1)-Sc-Y-Al-Y. In the samples of this work, there is an apparent limit in the Sc incorporation at the Y site, which is in contrast to the favored mechanism of incorporation in Sc-doped andradites. This limit can be explained in terms of relative dimensions of the structural sites when Al is the dominant Y cation. These results must be taken into account when evaluating trace-element behavior in garnets for geochemical purposes. In particular, they explain why D-Sc can be treated together with D-REE in models based on the elastic strain theory in garnets close to the pyrope composition, but deviate from the parabolic fit in grossular-rich garnets.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/153792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact