We study the H-regular surfaces, a class of intrinsic regular hypersurfaces in the setting of the Heisenberg group H^n = C^n x R = R^{2n+1} endowed with a left-invariant metric d equivalent to its Carnot-Carathéodory (CC) metric. Here hypersurface simply means topological codimension 1 surface and by the words "'intrinsic'" and "'regular" we mean, respectively, notions involving the group structure of H^n and its differential structure as CC manifold. In particular, we characterize these surfaces as intrinsic regular graphs inside H^n by studying the intrinsic regularity of the parameterizations and giving an area-type formula for their intrinsic surface measure.

Intrinsic regular hypersurfaces in Heisenberg groups

VITTONE, DAVIDE
2006

Abstract

We study the H-regular surfaces, a class of intrinsic regular hypersurfaces in the setting of the Heisenberg group H^n = C^n x R = R^{2n+1} endowed with a left-invariant metric d equivalent to its Carnot-Carathéodory (CC) metric. Here hypersurface simply means topological codimension 1 surface and by the words "'intrinsic'" and "'regular" we mean, respectively, notions involving the group structure of H^n and its differential structure as CC manifold. In particular, we characterize these surfaces as intrinsic regular graphs inside H^n by studying the intrinsic regularity of the parameterizations and giving an area-type formula for their intrinsic surface measure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/153930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 77
  • OpenAlex ND
social impact