Optical tweezer arrays generated by diffractive optical elements can extend the capabilities to manipulate and organize microscopic particles into complex structures, to sort them intelligently and to study collective behavior in many-body systems materials. We describe new design methods, based on iterative algorithms, to calculate phase-only diffractive optical elements able to generate planar and three-dimensional arrays of tweezers. Experimental results showing the validity of the design approach are presented for an array of eight gaussian spots.

Design and fabrication of diffractive optical elements for optical tweezer arrays by means of e-beam lithography

ROMANATO, FILIPPO;
2002

Abstract

Optical tweezer arrays generated by diffractive optical elements can extend the capabilities to manipulate and organize microscopic particles into complex structures, to sort them intelligently and to study collective behavior in many-body systems materials. We describe new design methods, based on iterative algorithms, to calculate phase-only diffractive optical elements able to generate planar and three-dimensional arrays of tweezers. Experimental results showing the validity of the design approach are presented for an array of eight gaussian spots.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/153939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
social impact