The crossed–uncrossed difference (CUD) estimates the interhemispheric transfer time (ITT) through the corpus callosum. Previous research has shown that transcranial magnetic stimulation (TMS) to the occipital cortex determines an increased CUD during cognitive tasks. The aim of the present study was to investigate whether TMS stimulation applied at a motor stage can interfere with the ITT, comparing the performance of leftand right-handed people. Results showed a significant TMS effect, i.e. increasing reaction times were reported when stimulation was delivered on the left primary motor area. Effects were more evident when information was primarily perceived through the dominant hemisphere. Both left and right stimulations increased CUD times in right-handed subjects; however, left-handed subjects showed significant effects associated with left stimulation only. Furthermore, in both groups, TMS produced larger effects in the crossed than in the uncrossed condition. TMS stimulation increased reaction times, thus supporting the idea that the interhemispheric transfer of visuo-motor information occurs at a motor processing stage. The dominant hemisphere seems to play a major role within this process: our data indicates that left- and right-handed people have different ITT latencies associated with the transfer of information to the contralateral hemisphere.

The role of prefrontal cortex in visuo-spatial planning: A repetitive-TMS study

BISIACCHI, PATRIZIA;
2006

Abstract

The crossed–uncrossed difference (CUD) estimates the interhemispheric transfer time (ITT) through the corpus callosum. Previous research has shown that transcranial magnetic stimulation (TMS) to the occipital cortex determines an increased CUD during cognitive tasks. The aim of the present study was to investigate whether TMS stimulation applied at a motor stage can interfere with the ITT, comparing the performance of leftand right-handed people. Results showed a significant TMS effect, i.e. increasing reaction times were reported when stimulation was delivered on the left primary motor area. Effects were more evident when information was primarily perceived through the dominant hemisphere. Both left and right stimulations increased CUD times in right-handed subjects; however, left-handed subjects showed significant effects associated with left stimulation only. Furthermore, in both groups, TMS produced larger effects in the crossed than in the uncrossed condition. TMS stimulation increased reaction times, thus supporting the idea that the interhemispheric transfer of visuo-motor information occurs at a motor processing stage. The dominant hemisphere seems to play a major role within this process: our data indicates that left- and right-handed people have different ITT latencies associated with the transfer of information to the contralateral hemisphere.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1560626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact