The helical structure of the chiral nematic phases (cholesterics) obtained by doping nematic solvents with chiral non-racemic compounds is a macroscopic proof of the solute chirality. Oligonaphthalene (tetra-, hexa-, octa-) derivatives linked at the 1,4-positions have been used as chiral dopants: When the chirality axes are configurationally homogeneous (that is, all-S), the molecular structures correspond to right-handed helices. Yet, we have found series of derivatives with the surprising property that the handedness of the induced cholesteric phase alternates from positive to negative and to positive again, on passing from tetra- to hexa- and to octanaphthalene. A comparison with oligonapthalene derivatives, which do not exhibit this twisting ability, points to the importance of the substitution pattern. Both the possibility of inducing oppositely-handed cholesteric phases by homochiral helices of different length, and the role played of substituents, are confirmed by calculations performed with the surface chirality model.

Homochiral helices of oligonaphthalenes inducing opposite-handed cholesteric phases

FERRARINI, ALBERTA;
2006

Abstract

The helical structure of the chiral nematic phases (cholesterics) obtained by doping nematic solvents with chiral non-racemic compounds is a macroscopic proof of the solute chirality. Oligonaphthalene (tetra-, hexa-, octa-) derivatives linked at the 1,4-positions have been used as chiral dopants: When the chirality axes are configurationally homogeneous (that is, all-S), the molecular structures correspond to right-handed helices. Yet, we have found series of derivatives with the surprising property that the handedness of the induced cholesteric phase alternates from positive to negative and to positive again, on passing from tetra- to hexa- and to octanaphthalene. A comparison with oligonapthalene derivatives, which do not exhibit this twisting ability, points to the importance of the substitution pattern. Both the possibility of inducing oppositely-handed cholesteric phases by homochiral helices of different length, and the role played of substituents, are confirmed by calculations performed with the surface chirality model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1562164
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact