Recent experiments by Fischetti and Lodi show that the first Chvátal closure of a pure integer linear program (ILP) often gives a surprisingly tight approximation of the integer hull. They optimize over the first Chvátal closure by modeling the Chvátal–Gomory (CG) separation problem as a mixed integer linear program (MILP) which is then solved by a general purpose MILP solver. Unfortunately, this approach does not extend immediately to the Gomory mixed integer (GMI) closure of an MILP, since the GMI separation problem involves the solution of a nonlinear mixed integer program or a parametricMILP. In this paper we introduce a projected version of the CG cuts, and study their practical effectiveness for MILP problems. The idea is to project first the linear programming relaxation of the MILP at hand onto the space of the integer variables, and then to derive Chvátal–Gomory cuts for the projected polyhedron. Though theoretically dominated by GMI cuts, projected CG cuts have the advantage of producing a separation model very similar to the one introduced by Fischetti and Lodi, which can typically be solved in a reasonable amount of computing time.

Projected Chvatal-Gomory cuts for Mixed Integer Linear Programs

FISCHETTI, MATTEO;
2008

Abstract

Recent experiments by Fischetti and Lodi show that the first Chvátal closure of a pure integer linear program (ILP) often gives a surprisingly tight approximation of the integer hull. They optimize over the first Chvátal closure by modeling the Chvátal–Gomory (CG) separation problem as a mixed integer linear program (MILP) which is then solved by a general purpose MILP solver. Unfortunately, this approach does not extend immediately to the Gomory mixed integer (GMI) closure of an MILP, since the GMI separation problem involves the solution of a nonlinear mixed integer program or a parametricMILP. In this paper we introduce a projected version of the CG cuts, and study their practical effectiveness for MILP problems. The idea is to project first the linear programming relaxation of the MILP at hand onto the space of the integer variables, and then to derive Chvátal–Gomory cuts for the projected polyhedron. Though theoretically dominated by GMI cuts, projected CG cuts have the advantage of producing a separation model very similar to the one introduced by Fischetti and Lodi, which can typically be solved in a reasonable amount of computing time.
File in questo prodotto:
File Dimensione Formato  
projected_CG_cuts.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 213 kB
Formato Adobe PDF
213 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1562233
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact