High-spin states in the proton-rich nucleus 45V have been identified for the first time. A comprehensive γ-ray decay scheme has been established following an experiment performed at the Vivitron accelerator at IReS Strasbourg by using the Euroball γ-ray detector array coupled to the Neutron Wall and Euclides detector arrays. The natural (negative-) parity scheme is identified up to the f7/2 band termination in addition to a positive-parity collective structure based on a d3/2 particle-hole excitation. Comparison of this scheme with that of the mirror partner, 45Ti, has yielded detailed information on the variation of Coulomb energy as a function of excitation energy and angular momentum. This is the first time that such an analysis has been performed for a collective structure built on a cross-shell excitation. Comparison of the observed Coulomb energies with those predicted by large-scale shell-model calculations is presented. In this case, unusually, the calculations do not fare as well as for heavier nuclei in the shell. In addition, stark differences between the two nuclei are observed for the decay intensities of the parity-changing E1 decays that de-excite the positive-parity deformed bands.

High-spin spectroscopy of natural and unnatural parity states in the mirror-pair 45V/45Ti

BRANDOLINI, FRANCO;LENZI, SILVIA MONICA;
2006

Abstract

High-spin states in the proton-rich nucleus 45V have been identified for the first time. A comprehensive γ-ray decay scheme has been established following an experiment performed at the Vivitron accelerator at IReS Strasbourg by using the Euroball γ-ray detector array coupled to the Neutron Wall and Euclides detector arrays. The natural (negative-) parity scheme is identified up to the f7/2 band termination in addition to a positive-parity collective structure based on a d3/2 particle-hole excitation. Comparison of this scheme with that of the mirror partner, 45Ti, has yielded detailed information on the variation of Coulomb energy as a function of excitation energy and angular momentum. This is the first time that such an analysis has been performed for a collective structure built on a cross-shell excitation. Comparison of the observed Coulomb energies with those predicted by large-scale shell-model calculations is presented. In this case, unusually, the calculations do not fare as well as for heavier nuclei in the shell. In addition, stark differences between the two nuclei are observed for the decay intensities of the parity-changing E1 decays that de-excite the positive-parity deformed bands.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1562780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 17
social impact