We elaborate on the proposal that the observed acceleration of the Universe is the result of the backreaction of cosmological perturbations, rather than the effect of a negative-pressure dark-energy fluid or a modification of general relativity. Through the effective Friedmann equations describing an inhomogeneous Universe after smoothing, we demonstrate that acceleration in our local Hubble patch is possible even if fluid elements do not individually undergo accelerated expansion. This invalidates the no-go theorem that there can be no acceleration in our local Hubble patch if the Universe only contains irrotational dust. We then study perturbatively the time behaviour of general-relativistic cosmological perturbations, applying, where possible, the renormalization group to regularize the dynamics. We show that an instability occurs in the perturbative expansion involving sub-Hubble modes. Whether this is an indication that acceleration in our Hubble patch originates from the backreaction of cosmological perturbations on observable scales requires a fully non-perturbative approach.

On Cosmic Acceleration without Dark Energy

MATARRESE, SABINO;
2006

Abstract

We elaborate on the proposal that the observed acceleration of the Universe is the result of the backreaction of cosmological perturbations, rather than the effect of a negative-pressure dark-energy fluid or a modification of general relativity. Through the effective Friedmann equations describing an inhomogeneous Universe after smoothing, we demonstrate that acceleration in our local Hubble patch is possible even if fluid elements do not individually undergo accelerated expansion. This invalidates the no-go theorem that there can be no acceleration in our local Hubble patch if the Universe only contains irrotational dust. We then study perturbatively the time behaviour of general-relativistic cosmological perturbations, applying, where possible, the renormalization group to regularize the dynamics. We show that an instability occurs in the perturbative expansion involving sub-Hubble modes. Whether this is an indication that acceleration in our Hubble patch originates from the backreaction of cosmological perturbations on observable scales requires a fully non-perturbative approach.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1563574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 218
  • ???jsp.display-item.citation.isi??? 208
social impact