In this study we investigated the role of Cu(2+), Mn(2+), Zn(2+), and Al(3+) in inducing defective conformational rearrangements of the recombinant human prion protein (hPrP), which trigger aggregation and fibrillogenesis. The research was extended to the fragment of hPrP spanning residues 82-146, which was identified as a major component of the amyloid deposits in the brain of patients affected by Gerstmann-Sträussler-Scheinker (GSS) disease. Variants of the 82-146 wild-type subunit [PrP-(82-146)(wt)] were also examined, including entirely, [PrP-(82-146)(scr)], and partially scrambled, [PrP-(82-146)(106)(-)(126scr)] and [PrP-(82-146)(127)(-)(146scr)], peptides. Al(3+) strongly stimulated the conversion of native hPrP into the altered conformation, and its potency in inducing aggregation was very high. Despite a lower rate and extent of prion protein conversion into altered isoforms, however, Zn(2+) was more efficient than Al(3+) in promoting organization of hPrP aggregates into well-structured, amyloid-like fibrillar filaments, whereas Mn(2+) delayed and Cu(2+) prevented the process. GSS peptides underwent the fibrillogenesis process much faster than the full-length protein. The intrinsic ability of PrP-(82-146)(wt) to form fibrillar aggregates was exalted in the presence of Zn(2+) and, to a lesser extent, of Al(3+), whereas Cu(2+) and Mn(2+) inhibited the conversion of the peptide into amyloid fibrils. Amino acid substitution in the neurotoxic core (sequence 106-126) of the 82-146 fragment reduced its amyloidogenic potential. In this case, the stimulatory effect of Zn(2+) was lower as compared to the wild-type peptide; on the contrary Al(3+) and Mn(2+) induced a higher propensity to fibrillation, which was ascribed to different binding modalities to GSS peptides. In all cases, alteration of the 127-146 sequence strongly inhibited the fibrillogenesis process, thus suggesting that integrity of the C-terminal region was essential both to confer amyloidogenic properties on GSS peptides and to activate the stimulatory potential of the metal ions.

Aggregation/fibrillogenesis of recombinant human prion protein and Gerstmann-Straussler-Scheinker disease peptides in the presence of metal ions.

NEGRO, ALESSANDRO;
2006

Abstract

In this study we investigated the role of Cu(2+), Mn(2+), Zn(2+), and Al(3+) in inducing defective conformational rearrangements of the recombinant human prion protein (hPrP), which trigger aggregation and fibrillogenesis. The research was extended to the fragment of hPrP spanning residues 82-146, which was identified as a major component of the amyloid deposits in the brain of patients affected by Gerstmann-Sträussler-Scheinker (GSS) disease. Variants of the 82-146 wild-type subunit [PrP-(82-146)(wt)] were also examined, including entirely, [PrP-(82-146)(scr)], and partially scrambled, [PrP-(82-146)(106)(-)(126scr)] and [PrP-(82-146)(127)(-)(146scr)], peptides. Al(3+) strongly stimulated the conversion of native hPrP into the altered conformation, and its potency in inducing aggregation was very high. Despite a lower rate and extent of prion protein conversion into altered isoforms, however, Zn(2+) was more efficient than Al(3+) in promoting organization of hPrP aggregates into well-structured, amyloid-like fibrillar filaments, whereas Mn(2+) delayed and Cu(2+) prevented the process. GSS peptides underwent the fibrillogenesis process much faster than the full-length protein. The intrinsic ability of PrP-(82-146)(wt) to form fibrillar aggregates was exalted in the presence of Zn(2+) and, to a lesser extent, of Al(3+), whereas Cu(2+) and Mn(2+) inhibited the conversion of the peptide into amyloid fibrils. Amino acid substitution in the neurotoxic core (sequence 106-126) of the 82-146 fragment reduced its amyloidogenic potential. In this case, the stimulatory effect of Zn(2+) was lower as compared to the wild-type peptide; on the contrary Al(3+) and Mn(2+) induced a higher propensity to fibrillation, which was ascribed to different binding modalities to GSS peptides. In all cases, alteration of the 127-146 sequence strongly inhibited the fibrillogenesis process, thus suggesting that integrity of the C-terminal region was essential both to confer amyloidogenic properties on GSS peptides and to activate the stimulatory potential of the metal ions.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1563730
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 34
  • OpenAlex ND
social impact