We study numerically the tightness of prime flat knots in a model of self-attracting polymers with excluded volume. We find that these knots are localized in the high temperature swollen regime, but become delocalized in the low temperature globular phase. Precisely at the collapse transition, the knots are weakly localized. Some of our results can be interpreted in terms of the theory of polymer networks, which allows one to conjecture exact exponents for the knot length probability distributions.

Polymer theta-point as a knot delocalization transition

ORLANDINI, ENZO;STELLA, ATTILIO;
2003

Abstract

We study numerically the tightness of prime flat knots in a model of self-attracting polymers with excluded volume. We find that these knots are localized in the high temperature swollen regime, but become delocalized in the low temperature globular phase. Precisely at the collapse transition, the knots are weakly localized. Some of our results can be interpreted in terms of the theory of polymer networks, which allows one to conjecture exact exponents for the knot length probability distributions.
2003
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1571743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 34
social impact