How difficult is, in practice, to optimize exactly over the first Chvátal closure of a generic ILP? Which fraction of the integrality gap can be closed this way, e.g., for some hard problems in the MIPLIB library? Can the first-closure optimization be useful as a research (off-line) tool to guess the structure of some relevant classes of inequalities, when a specific combinatorial problem is addressed? In this paper we give answers to the above questions, based on an extensive computational analysis.Our approach is to model the rank-1 Chvátal- Gomory separation problem, which is known to be NP-hard, through a MIP model, which is then solved through a general-purpose MIP solver. As far as we know, this approach was never implemented and evaluated computationally by previous authors, though it gives a very useful separation tool for general ILP problems. We report the optimal value over the first Chvátal closure for a set of ILP problems from MIPLIB 3.0 and 2003. We also report, for the first time, the optimal solution of a very hard instance from MIPLIB 2003, namely nsrand-ipx, obtained by using our cut separation procedure to preprocess the original ILP model. Finally, we describe a new class of ATSP facets found with the help of our separation procedure.

Optimizing over the first Chvatal closure

FISCHETTI, MATTEO;
2007

Abstract

How difficult is, in practice, to optimize exactly over the first Chvátal closure of a generic ILP? Which fraction of the integrality gap can be closed this way, e.g., for some hard problems in the MIPLIB library? Can the first-closure optimization be useful as a research (off-line) tool to guess the structure of some relevant classes of inequalities, when a specific combinatorial problem is addressed? In this paper we give answers to the above questions, based on an extensive computational analysis.Our approach is to model the rank-1 Chvátal- Gomory separation problem, which is known to be NP-hard, through a MIP model, which is then solved through a general-purpose MIP solver. As far as we know, this approach was never implemented and evaluated computationally by previous authors, though it gives a very useful separation tool for general ILP problems. We report the optimal value over the first Chvátal closure for a set of ILP problems from MIPLIB 3.0 and 2003. We also report, for the first time, the optimal solution of a very hard instance from MIPLIB 2003, namely nsrand-ipx, obtained by using our cut separation procedure to preprocess the original ILP model. Finally, we describe a new class of ATSP facets found with the help of our separation procedure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1773796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? ND
social impact