Given pollution measurement from a network of monitoring sites in the area of a city and over an extended period of time, an important problem is to identify the spatial and temporal structure of the data. In this paper we focus on the identification and estimate of a statistical non parametric model to analyse the SO2 in the city of Padua, where data are collected by some fixed stations and some mobile stations moving without any specific rule in different new locations. The impact of the use of mobile stations is that for each location there are times when data was not collected. Assuming temporal stationarity and spatial isotropy for the residuals of an additive model for the logarithm of SO2 concentration, we estimate the semivariogram using a kernel-type estimator. Attempts are made to avoid the assumption of spatial isotropy. Bootstrap confidence bands are obtained for the spatial component of the additive model that is a deterministic function which defines the spatial structure. Finally, an example is proposed to design an optimal network for the mobiles monitoring stations in a fixed future time, given all the information available.

Non-parametric space-time modeling of SO2 in presence of many missing data

SCARPA, BRUNO
2005

Abstract

Given pollution measurement from a network of monitoring sites in the area of a city and over an extended period of time, an important problem is to identify the spatial and temporal structure of the data. In this paper we focus on the identification and estimate of a statistical non parametric model to analyse the SO2 in the city of Padua, where data are collected by some fixed stations and some mobile stations moving without any specific rule in different new locations. The impact of the use of mobile stations is that for each location there are times when data was not collected. Assuming temporal stationarity and spatial isotropy for the residuals of an additive model for the logarithm of SO2 concentration, we estimate the semivariogram using a kernel-type estimator. Attempts are made to avoid the assumption of spatial isotropy. Bootstrap confidence bands are obtained for the spatial component of the additive model that is a deterministic function which defines the spatial structure. Finally, an example is proposed to design an optimal network for the mobiles monitoring stations in a fixed future time, given all the information available.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/188724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact