We report a new type of ultramafic pseudotachylyte that forms a fault- and injection-vein network hosted in the mantle-derived Balmuccia peridotite (Italy). In the fault vein the pseudotachylyte is now deformed and recrystallized into a spinel-lherzolite facies ultramylonite, made of a fine (< 2 mu m) aggregate of olivine, orthopyroxene, clinopyroxene, and spinel, with small amounts of amphibole and dolomite. Electron backscattered diffraction study of the ultramylonite shows a clear crystallographic preferred orientation (CPO) of olivine. The fault vein pseudotachylyte overprints a spinel-lherzolite facies amphibole-bearing mylonite, indicating that shear localization accompanying chemical reaction had taken place in the peridotite before seismic slip produced frictional melting. The occurrence of amphibole in the host mylonite and that of dolomite as well as amphibole in the matt-ices of ultramylonite and pseudotachylyte may indicate that fluid was present and had evolved in its composition from H2O-rich to CO2-rich during ductile deformation with metamorphic reactions, which may account for the observed rheological transition from ductile to brittle behavior. The spinel-lherzolite facies assemblage in mylonites, P-T estimations from pyroxene geothermometry and carbonate reactions, and the type of olivine CPO in deformed pseudotachylyte indicate that both the preseismic and the postseismic ductile deformations occurred at similar to 800 degrees C and 0.7-1.1 GPa.

Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies

DI TORO, GIULIO;
2008

Abstract

We report a new type of ultramafic pseudotachylyte that forms a fault- and injection-vein network hosted in the mantle-derived Balmuccia peridotite (Italy). In the fault vein the pseudotachylyte is now deformed and recrystallized into a spinel-lherzolite facies ultramylonite, made of a fine (< 2 mu m) aggregate of olivine, orthopyroxene, clinopyroxene, and spinel, with small amounts of amphibole and dolomite. Electron backscattered diffraction study of the ultramylonite shows a clear crystallographic preferred orientation (CPO) of olivine. The fault vein pseudotachylyte overprints a spinel-lherzolite facies amphibole-bearing mylonite, indicating that shear localization accompanying chemical reaction had taken place in the peridotite before seismic slip produced frictional melting. The occurrence of amphibole in the host mylonite and that of dolomite as well as amphibole in the matt-ices of ultramylonite and pseudotachylyte may indicate that fluid was present and had evolved in its composition from H2O-rich to CO2-rich during ductile deformation with metamorphic reactions, which may account for the observed rheological transition from ductile to brittle behavior. The spinel-lherzolite facies assemblage in mylonites, P-T estimations from pyroxene geothermometry and carbonate reactions, and the type of olivine CPO in deformed pseudotachylyte indicate that both the preseismic and the postseismic ductile deformations occurred at similar to 800 degrees C and 0.7-1.1 GPa.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2266327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 63
social impact