La0.6Sr0.4Co1-yFeyO3-δ (y = 0.2, 0.5, 0.8) perovskite-type oxide powders were prepared by the citrate gel method with the aim of investigating the influence of cobalt/iron atomic ratio on the chemical and structural properties as well as on the catalytic activity. The samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal analysis, Kr physisorption surface area, scanning electron microscopy (SEM), and temperature programmed reduction (TPR). XRD outcomes reveal the formation of perovskite phase after calcination at 873 K. Depending on the Co/Fe atomic ratio, the perovskite exhibits two different structure: rhombohedral for y < 0.5, orthorhombic for y = 0.5. However, other phases are also observed. The crystallite size increases with the calcination temperature, while decreases with the iron content. The specific surface area of the La0.6Sr0.4Co1-yFeyO3-δ perovskites (calcined at 1073 K) is low, but increases with the iron amount: it varies between 4.1 and 6.6 m2 g-1 moving from y =0.2 to y = 0.8. XPS results reveal the presence of traces of Co(II) in the sample with lower cobalt amount. The scanning electron micrographs reveal nanoscaled near spherical particles which are clustered together, forming a highly porous microstructure. However, the samples with higher iron content show a more compact morphology due to the enhanced agglomeration. The perovskite phase is rather stable even after aggressive treatment as high temperature reduction. The influence of cobalt/iron atomic ratio on the catalytic activity toward alcohol steam reforming was investigated. All the samples present good alcohol dehydrogenation activity, as resulting from the methanol steam reforming experiments. In the steam reforming of ethanol, the La0.6Sr0.4Co0.5Fe0.5O3-δ presents the better performance (especially after reduction at 873 K) with the complete conversion of ethanol into syngas above 850 K and the almost complete suppression of the ethylene formation at lower temperature. The differences of the activity toward ethanol steam reforming are attributable to a different stabilization of Co(0) nanoparticles produced during the reduction at 873 K.

La0.6Sr0.4Co1-yFeyO3-δ perovskites: influence of the Co/Fe atomic ratio on properties and catalytic activity towards alcohol steam-reforming

GLISENTI, ANTONELLA;
2008

Abstract

La0.6Sr0.4Co1-yFeyO3-δ (y = 0.2, 0.5, 0.8) perovskite-type oxide powders were prepared by the citrate gel method with the aim of investigating the influence of cobalt/iron atomic ratio on the chemical and structural properties as well as on the catalytic activity. The samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal analysis, Kr physisorption surface area, scanning electron microscopy (SEM), and temperature programmed reduction (TPR). XRD outcomes reveal the formation of perovskite phase after calcination at 873 K. Depending on the Co/Fe atomic ratio, the perovskite exhibits two different structure: rhombohedral for y < 0.5, orthorhombic for y = 0.5. However, other phases are also observed. The crystallite size increases with the calcination temperature, while decreases with the iron content. The specific surface area of the La0.6Sr0.4Co1-yFeyO3-δ perovskites (calcined at 1073 K) is low, but increases with the iron amount: it varies between 4.1 and 6.6 m2 g-1 moving from y =0.2 to y = 0.8. XPS results reveal the presence of traces of Co(II) in the sample with lower cobalt amount. The scanning electron micrographs reveal nanoscaled near spherical particles which are clustered together, forming a highly porous microstructure. However, the samples with higher iron content show a more compact morphology due to the enhanced agglomeration. The perovskite phase is rather stable even after aggressive treatment as high temperature reduction. The influence of cobalt/iron atomic ratio on the catalytic activity toward alcohol steam reforming was investigated. All the samples present good alcohol dehydrogenation activity, as resulting from the methanol steam reforming experiments. In the steam reforming of ethanol, the La0.6Sr0.4Co0.5Fe0.5O3-δ presents the better performance (especially after reduction at 873 K) with the complete conversion of ethanol into syngas above 850 K and the almost complete suppression of the ethylene formation at lower temperature. The differences of the activity toward ethanol steam reforming are attributable to a different stabilization of Co(0) nanoparticles produced during the reduction at 873 K.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2266753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 118
  • ???jsp.display-item.citation.isi??? 119
social impact