Recent advances in nanotechnology and atomic physics may allow for a demonstration of the dynamical Casimir effect. An array of film bulk acoustic resonators ( FBARs) coherently driven at twice the resonant frequency of a high-quality electromagnetic cavity can generate a stationary state of Casimir photons. These are detected using an alkali atom beam prepared in an inverted population of hyperfine states, with an induced superradiant burst producing a detectable radio-frequency signal. We describe here the results of the simulations of the dynamics of superradiance and superfluorescence, with the aim to optimize the parameters for the detectability of Casimir photons. When the superradiant lifetime is shorter than the dissipation time, we find superradiant evolution to be similar in character but dramatically slower than in the usual lossy case.

Modelling superradiant amplification of Casimir photons in very low dissipation cavities

ONOFRIO, ROBERTO
2008

Abstract

Recent advances in nanotechnology and atomic physics may allow for a demonstration of the dynamical Casimir effect. An array of film bulk acoustic resonators ( FBARs) coherently driven at twice the resonant frequency of a high-quality electromagnetic cavity can generate a stationary state of Casimir photons. These are detected using an alkali atom beam prepared in an inverted population of hyperfine states, with an induced superradiant burst producing a detectable radio-frequency signal. We describe here the results of the simulations of the dynamics of superradiance and superfluorescence, with the aim to optimize the parameters for the detectability of Casimir photons. When the superradiant lifetime is shorter than the dissipation time, we find superradiant evolution to be similar in character but dramatically slower than in the usual lossy case.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2268169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact