We study the dependence of the eigenvalues of a N-dimensional vibrating membrane upon variation of the mass density. We prove that the elementary symmetric functions of the eigenvalues depend real-analytically on the mass density and that such functions have no critical points with constant mass constraint. In particular, the elementary symmetric functions of the eigenvalues, hence all simple eigenvalues, have no local maxima or minima on the set of those mass densities with a prescribed total mass.

Absence of Critical Mass Densities for a Vibrating Membrane

LAMBERTI, PIER DOMENICO
2009

Abstract

We study the dependence of the eigenvalues of a N-dimensional vibrating membrane upon variation of the mass density. We prove that the elementary symmetric functions of the eigenvalues depend real-analytically on the mass density and that such functions have no critical points with constant mass constraint. In particular, the elementary symmetric functions of the eigenvalues, hence all simple eigenvalues, have no local maxima or minima on the set of those mass densities with a prescribed total mass.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2378405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact