Pycnogenol, which is extracted from the bark of French maritime pine, has been shown to have antioxidant and free radical scavenging activities. Thioredoxin reductase (TrxR), glutathione peroxidase (GPx) and glutathione reductase (GR) are three central redox enzymes that are active in endogenous defence against oxidative stress in the cell. Treatment of cells with Pycnogenol decreased the activity of both TrxR and GPx in cells by more than 50%, but GR was not affected. As previously reported, both enzymes were induced after treatment with hydrogen peroxide and selenite. The presence of Pycnogenol efficiently decreased selenite-mediated reactive oxygen species (ROS) production. Addition of Pycnogenol after selenite treatment reduced the mRNA expression and activity of TrxR to basal levels. In contrast, the GPx activity was completely unaffected. The discrepancy between TrxR and GPx regulation may indicate that transcription of TrxR is induced primarily by oxidative stress. As TrxR is induced in various pathological conditions, including tumours and inflammatory conditions, decreased activity mediated by a non-toxic agent such as Pycnogenol may be of great value.

Effects of the antioxidant Pycnogenol((R)) on cellular redox systems in U1285 human lung carcinoma cells

GANDIN, VALENTINA;
2009

Abstract

Pycnogenol, which is extracted from the bark of French maritime pine, has been shown to have antioxidant and free radical scavenging activities. Thioredoxin reductase (TrxR), glutathione peroxidase (GPx) and glutathione reductase (GR) are three central redox enzymes that are active in endogenous defence against oxidative stress in the cell. Treatment of cells with Pycnogenol decreased the activity of both TrxR and GPx in cells by more than 50%, but GR was not affected. As previously reported, both enzymes were induced after treatment with hydrogen peroxide and selenite. The presence of Pycnogenol efficiently decreased selenite-mediated reactive oxygen species (ROS) production. Addition of Pycnogenol after selenite treatment reduced the mRNA expression and activity of TrxR to basal levels. In contrast, the GPx activity was completely unaffected. The discrepancy between TrxR and GPx regulation may indicate that transcription of TrxR is induced primarily by oxidative stress. As TrxR is induced in various pathological conditions, including tumours and inflammatory conditions, decreased activity mediated by a non-toxic agent such as Pycnogenol may be of great value.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2384058
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact