Let X be a smooth projective variety, and let PB be a moduli space of stable parabolic bundles on X. For any flat family E_* of parabolic bundles on X parametrized by a smooth scheme Y, and for any integer m, with 1 <= m <= dim X, we construct a closed differential form \Omega = \Omega_{E_*} on Y with values in H^m(X, O_X). By using the vector-valued differential form \Omega we then prove that, for any i >= 0, the choice of a (non-zero) element \sigma \in H^i(X, \Omega^{i+m}_X), determines, in a natural way, a closed differential m-form \Omega_{\sigma} on the smooth locus of PB.

Differential forms on moduli spaces of parabolic bundles

BOTTACIN, FRANCESCO
2010

Abstract

Let X be a smooth projective variety, and let PB be a moduli space of stable parabolic bundles on X. For any flat family E_* of parabolic bundles on X parametrized by a smooth scheme Y, and for any integer m, with 1 <= m <= dim X, we construct a closed differential form \Omega = \Omega_{E_*} on Y with values in H^m(X, O_X). By using the vector-valued differential form \Omega we then prove that, for any i >= 0, the choice of a (non-zero) element \sigma \in H^i(X, \Omega^{i+m}_X), determines, in a natural way, a closed differential m-form \Omega_{\sigma} on the smooth locus of PB.
File in questo prodotto:
File Dimensione Formato  
rocky.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 298.96 kB
Formato Adobe PDF
298.96 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2423081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact