Lactic acid bacteria are the most frequently encountered beer-spoilage bacteria, and they may render beer undrinkable due to the production of lactic acid, diacetyl, and turbidity. Micro-brewed beer is typically sold unpasteurised, leaving it more susceptible to spoilage by lactic acid bacteria. In this study, the incidence of lactic acid bacteria in bottled microbrewed beer from Victoria, Australia was investigated. A total of 80 beers from 19 breweries were screened for lactic acid bacteria. Almost 30% contained culturable lactic acid bacteria, and many had lactic acid levels well above the flavour threshold. Ethanol, hops, and the pH levels of the beers were not predictors for spoilage in the beers examined, and contamination appeared to be more closely linked to the source brewery. The 45 lactic acid strains isolated from these beers were identified by RAPD-PCR, with Lactobacillus brevis being the most frequently isolated species. All isolates were capable of spoiling beer and contained putative hop resistance genes. At typical beer levels, pH and ethanol had no effect on the growth of the particular spoilage bacteria isolated in this study. © 2010 The Institute of Brewing & Distilling.

Isolation, Identification, and Characterisation of Beer-Spoilage Lactic Acid Bacteria from Microbrewed Beer from Victoria, Australia

CORICH, VIVIANA;
2010

Abstract

Lactic acid bacteria are the most frequently encountered beer-spoilage bacteria, and they may render beer undrinkable due to the production of lactic acid, diacetyl, and turbidity. Micro-brewed beer is typically sold unpasteurised, leaving it more susceptible to spoilage by lactic acid bacteria. In this study, the incidence of lactic acid bacteria in bottled microbrewed beer from Victoria, Australia was investigated. A total of 80 beers from 19 breweries were screened for lactic acid bacteria. Almost 30% contained culturable lactic acid bacteria, and many had lactic acid levels well above the flavour threshold. Ethanol, hops, and the pH levels of the beers were not predictors for spoilage in the beers examined, and contamination appeared to be more closely linked to the source brewery. The 45 lactic acid strains isolated from these beers were identified by RAPD-PCR, with Lactobacillus brevis being the most frequently isolated species. All isolates were capable of spoiling beer and contained putative hop resistance genes. At typical beer levels, pH and ethanol had no effect on the growth of the particular spoilage bacteria isolated in this study. © 2010 The Institute of Brewing & Distilling.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2423472
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 38
social impact