Recent evidence suggests that alpha1-containing GABA(A) receptors mediate the sedative, amnestic, and to some extent the anticonvulsant actions of non-selective benzodiazepine (BZ) receptor ligands, such as diazepam (DZ). Anxiolytic and in part, anticonvulsant actions of BZ ligands are mediated by alpha2-, alpha3-, and alpha5-containing GABA(A) receptors. This has resulted in increasing interest in developing BZ ligands with selective actions at GABA(A) receptors, including alpha2-, alpha3-, and alpha5-subunits, but devoid of efficacy at alpha1-containing receptors. To refine their spectrum of pharmacological actions, efforts are being made to minimize unwanted effects such as sedation, amnesia, and tolerance liabilities. A prototype for such BZ ligands is imidazenil (IMD), an imidazo-benzodiazepine carboxylic acid derivative that elicits potent anticonvulsant and anxiolytic actions at doses virtually devoid of sedative, cardio-respiratory depressant and amnestic effects, and anticonvulsant tolerance liability. To define the pharmacological profile of IMD and its derivatives, we compared the anticonflict (anxiolytic), anti-proconflict (antipanic), anti-bicuculline (BIC), and maximal electroshock seizure (MES) effects, and the suppression of locomotor activity by imidazo-benzodiazepine carboxylic acid derivatives to those of DZ and bretazenil (BTZ). We report here that IMD and one of its derivatives (RO 25-2775) possess dose-dependent anticonflict, anti-proconflict, and anti-BIC actions but failed to suppress locomotor activity. Like DZ, the other IMD derivatives (enazenil, RO 25-2776, and RO 25-2847) not only elicit dose-dependent anticonflict, anti-proconflict, anti-BIC, anti-MES effects but also suppress locomotor activity. In contrast, none of the IMD derivatives studied shows any similarity to BTZ, which elicits anticonflict, anti-proconflict actions and suppresses locomotor activity but is virtually inactive against BIC-induced tonic-clonic convulsions.

Anticonvulsant, anxiolytic, and non-sedating actions of imidazenil and other imidazo-benzodiazepine carboxamide derivatives

GIUSTI, PIETRO;
2010

Abstract

Recent evidence suggests that alpha1-containing GABA(A) receptors mediate the sedative, amnestic, and to some extent the anticonvulsant actions of non-selective benzodiazepine (BZ) receptor ligands, such as diazepam (DZ). Anxiolytic and in part, anticonvulsant actions of BZ ligands are mediated by alpha2-, alpha3-, and alpha5-containing GABA(A) receptors. This has resulted in increasing interest in developing BZ ligands with selective actions at GABA(A) receptors, including alpha2-, alpha3-, and alpha5-subunits, but devoid of efficacy at alpha1-containing receptors. To refine their spectrum of pharmacological actions, efforts are being made to minimize unwanted effects such as sedation, amnesia, and tolerance liabilities. A prototype for such BZ ligands is imidazenil (IMD), an imidazo-benzodiazepine carboxylic acid derivative that elicits potent anticonvulsant and anxiolytic actions at doses virtually devoid of sedative, cardio-respiratory depressant and amnestic effects, and anticonvulsant tolerance liability. To define the pharmacological profile of IMD and its derivatives, we compared the anticonflict (anxiolytic), anti-proconflict (antipanic), anti-bicuculline (BIC), and maximal electroshock seizure (MES) effects, and the suppression of locomotor activity by imidazo-benzodiazepine carboxylic acid derivatives to those of DZ and bretazenil (BTZ). We report here that IMD and one of its derivatives (RO 25-2775) possess dose-dependent anticonflict, anti-proconflict, and anti-BIC actions but failed to suppress locomotor activity. Like DZ, the other IMD derivatives (enazenil, RO 25-2776, and RO 25-2847) not only elicit dose-dependent anticonflict, anti-proconflict, anti-BIC, anti-MES effects but also suppress locomotor activity. In contrast, none of the IMD derivatives studied shows any similarity to BTZ, which elicits anticonflict, anti-proconflict actions and suppresses locomotor activity but is virtually inactive against BIC-induced tonic-clonic convulsions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2424930
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact