We consider the Dirichlet eigenvalue problem $$ -\hbox{div}(|\nabla u|^{p-2}\nabla u ) =\lambda \| u\|_q^{p-q}|u|^{q-2}u, $$ where the unknowns $u\in W^{1,p}_0(\Omega )$ (the eigenfunction) and $\lambda >0$ (the eigenvalue), $\Omega $ is an arbitrary domain in $\mathbb{R}^N$ with finite measure, $1<p<\infty $, $1<q< p^*$, $p^*=Np/(N-p)$ if $1<p<N$ and $p^*=\infty $ if $p\geq N$. We study several existence and uniqueness results as well as some properties of the solutions. Moreover, we indicate how to extend to the general case some proofs known in the classical case $p=q$.
Existence and uniqueness for a p-Laplacian nonlinear eigenvalue problem
LAMBERTI, PIER DOMENICO
2010
Abstract
We consider the Dirichlet eigenvalue problem $$ -\hbox{div}(|\nabla u|^{p-2}\nabla u ) =\lambda \| u\|_q^{p-q}|u|^{q-2}u, $$ where the unknowns $u\in W^{1,p}_0(\Omega )$ (the eigenfunction) and $\lambda >0$ (the eigenvalue), $\Omega $ is an arbitrary domain in $\mathbb{R}^N$ with finite measure, $1
File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
franzina-lamberti.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
256.27 kB
Formato
Adobe PDF
|
256.27 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.