Mitochondrial thioredoxin reductase (TrxR2) maintains thioredoxin (Trx2) in a reduced state and plays a critical role in mitochondrial and cellular functions. TrxR2 has been identified in many different tissues and can be purified to homogeneity from whole organs and isolated mitochondria. Here we describe the detailed steps required to purify this enzyme. A different initial procedure is needed, according to whether purification starts from whole organs or from isolated and purified mitochondria. In the first case, acid precipitation is a critical preliminary step to separate mitochondrial thioredoxin reductase from the cytosolic isoform. Preparation involves ammonium sulfate fractionation, heating, and freeze/thaw cycles, followed by chromatographic passages involving DEAE-Sephacel, 2',5'-ADP-Sepharose 4B affinity, and omega-Aminohexyl-Sepharose 4B columns. The 2',5'-ADP-Sepharose 4B affinity step can be repeated to remove any contaminating glutathione reductase completely. Although several methods are available to detect the activity of this enzyme, reduction of DTNB is an easy and inexpensive test that can be applied not only to the highly purified enzyme but also to lysed mitochondria, provided non-TrxR2-dependent reaction rates are subtracted. TrxR2, like TrxR1, can be inhibited by several different and chemically unrelated substances, usually acting on the C-terminal containing the cysteine-selenocysteine active site. Many of these inhibitors react preferentially with the reduced form of the C-terminal tail. This condition can be evaluated by estimating enzyme activity after removal of the inhibitor by gel filtration of the enzyme preincubated in oxidizing or reducing conditions. Inhibition of thioredoxin reductase has important consequences for cell viability and can lead to apoptosis. Inhibition of TrxR2 causes large production of hydrogen peroxide, which diffuses from the mitochondrion to the cytosol and is responsible for most of the signaling events observed. Methods to measure hydrogen peroxide in isolated mitochondria or cultured cells are described.

Mitochondrial thioredoxin reductase: purification, inhibitor studies, and role in cell signaling

RIGOBELLO, MARIA PIA;BINDOLI, ALBERTO
2010

Abstract

Mitochondrial thioredoxin reductase (TrxR2) maintains thioredoxin (Trx2) in a reduced state and plays a critical role in mitochondrial and cellular functions. TrxR2 has been identified in many different tissues and can be purified to homogeneity from whole organs and isolated mitochondria. Here we describe the detailed steps required to purify this enzyme. A different initial procedure is needed, according to whether purification starts from whole organs or from isolated and purified mitochondria. In the first case, acid precipitation is a critical preliminary step to separate mitochondrial thioredoxin reductase from the cytosolic isoform. Preparation involves ammonium sulfate fractionation, heating, and freeze/thaw cycles, followed by chromatographic passages involving DEAE-Sephacel, 2',5'-ADP-Sepharose 4B affinity, and omega-Aminohexyl-Sepharose 4B columns. The 2',5'-ADP-Sepharose 4B affinity step can be repeated to remove any contaminating glutathione reductase completely. Although several methods are available to detect the activity of this enzyme, reduction of DTNB is an easy and inexpensive test that can be applied not only to the highly purified enzyme but also to lysed mitochondria, provided non-TrxR2-dependent reaction rates are subtracted. TrxR2, like TrxR1, can be inhibited by several different and chemically unrelated substances, usually acting on the C-terminal containing the cysteine-selenocysteine active site. Many of these inhibitors react preferentially with the reduced form of the C-terminal tail. This condition can be evaluated by estimating enzyme activity after removal of the inhibitor by gel filtration of the enzyme preincubated in oxidizing or reducing conditions. Inhibition of thioredoxin reductase has important consequences for cell viability and can lead to apoptosis. Inhibition of TrxR2 causes large production of hydrogen peroxide, which diffuses from the mitochondrion to the cytosol and is responsible for most of the signaling events observed. Methods to measure hydrogen peroxide in isolated mitochondria or cultured cells are described.
9780123810038
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/2427188
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 42
social impact