A number of algorithms for computing the simulation preorder and equivalence are available. Let Σ denote the state space, → the transition relation and Psim the partition of Σ induced by simulation equivalence. The algorithms by Henzinger, Henzinger, Kopke and by Bloom and Paige run in O(|Σ||→|)-time and, as far as time complexity is concerned, they are the best available algorithms. However, these algorithms have the drawback of a space complexity that is more than quadratic in the size of the state space Σ. The algorithm by Gentilini, Piazza, Policriti — subsequently corrected by van Glabbeek and Ploeger — appears to provide the best compromise between time and space complexity. Gentilini et al.’s algorithm runs in O(|Psim|^2|→|)-time while the space complexity is in O(|Psim|^2+|Σ|log|Psim|). We present here a new efficient simulation algorithm that is obtained as a modification of Henzinger et al.’s algorithm and whose correctness is based on some techniques used in applications of abstract interpretation to model checking. Our algorithm runs in O(|Psim||→|)-time and O(|Psim||Σ|log|Σ|)-space. Thus, this algorithm improves the best known time bound while retaining an acceptable space complexity that is in general less than quadratic in the size of the state space |Σ|. An experimental evaluation showed good comparative results with respect to Henzinger, Henzinger and Kopke’s algorithm.

An efficient simulation algorithm based on abstract interpretation

RANZATO, FRANCESCO;
2010

Abstract

A number of algorithms for computing the simulation preorder and equivalence are available. Let Σ denote the state space, → the transition relation and Psim the partition of Σ induced by simulation equivalence. The algorithms by Henzinger, Henzinger, Kopke and by Bloom and Paige run in O(|Σ||→|)-time and, as far as time complexity is concerned, they are the best available algorithms. However, these algorithms have the drawback of a space complexity that is more than quadratic in the size of the state space Σ. The algorithm by Gentilini, Piazza, Policriti — subsequently corrected by van Glabbeek and Ploeger — appears to provide the best compromise between time and space complexity. Gentilini et al.’s algorithm runs in O(|Psim|^2|→|)-time while the space complexity is in O(|Psim|^2+|Σ|log|Psim|). We present here a new efficient simulation algorithm that is obtained as a modification of Henzinger et al.’s algorithm and whose correctness is based on some techniques used in applications of abstract interpretation to model checking. Our algorithm runs in O(|Psim||→|)-time and O(|Psim||Σ|log|Σ|)-space. Thus, this algorithm improves the best known time bound while retaining an acceptable space complexity that is in general less than quadratic in the size of the state space |Σ|. An experimental evaluation showed good comparative results with respect to Henzinger, Henzinger and Kopke’s algorithm.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2427452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 17
social impact