The vertical distribution of the ectomycorrhizal (ECM) community was studied in four old high-mountain Norway spruce (Picea abies [L.] Karst.) stands in northern Italy. The aim was to verify if the variability in the community structure could be explained by characteristics of the organic and mineral soil horizons. The community structure was evaluated in terms of both fungal species and their ability to explore soil (exploration types). From the 128 humus profiles sampled over the two study periods, 31 ECM species were recorded. The study demonstrated that the number of both non-vital tips and vital non-mycorrhized tips decreases with soil depth, from organic to mineral horizons, while the number of ectomycorrhizal tips mainly increases with soil depth. A preference was found of some ECM species and exploration types for specific organic or mineral soil layers and their features, especially moisture and available nitrogen. These results can help in understanding how the functional role of the single consortia and the ecological features determining this "adaptive diversity" in ectomycorrhizal communities could be of major importance to assess the resilience in forest soil ecosystems.
Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands.
SCATTOLIN, LINDA;MONTECCHIO, LUCIO;MOSCA, ELENA;
2008
Abstract
The vertical distribution of the ectomycorrhizal (ECM) community was studied in four old high-mountain Norway spruce (Picea abies [L.] Karst.) stands in northern Italy. The aim was to verify if the variability in the community structure could be explained by characteristics of the organic and mineral soil horizons. The community structure was evaluated in terms of both fungal species and their ability to explore soil (exploration types). From the 128 humus profiles sampled over the two study periods, 31 ECM species were recorded. The study demonstrated that the number of both non-vital tips and vital non-mycorrhized tips decreases with soil depth, from organic to mineral horizons, while the number of ectomycorrhizal tips mainly increases with soil depth. A preference was found of some ECM species and exploration types for specific organic or mineral soil layers and their features, especially moisture and available nitrogen. These results can help in understanding how the functional role of the single consortia and the ecological features determining this "adaptive diversity" in ectomycorrhizal communities could be of major importance to assess the resilience in forest soil ecosystems.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.