The aim of this study was to test the hypothesis that swimming training might impact differentially myostatin expression in skeletal muscles, depending on fibre type composition, and in cardiac muscle of rats. Myostatin expression was analysed by real time reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry of the red deep portion (mainly composed of slow and type II A fibres) and in the superficial, white portion (composed of fast type II X and II B fibres) of the gastrocnemius muscle in adult male Wistar rats: (i) subjected to two consecutive swimming bouts for 3 h; (ii) subjected to intensive swimming training for 4 weeks; and (iii) sedentary control rats. Myostatin mRNA content was in all cases higher in white than in red muscles. Two bouts of swimming did not alter myostatin expression, whereas swimming training for 4 weeks resulted in a significant reduction of myostatin mRNA contents, significant both in white and red muscles but more pronounced in white muscles. Western blot did not detect any change in the amount of myostatin protein. Immunohistochemistry showed that, in control rats, myostatin was localized in presumptive satellite cells of a few muscle fibres. After training, the number of myostatin-positive spots decreased significantly. Myostatin mRNA content in cardiac muscle was lower than in skeletal muscle and was significantly increased by swimming training. In conclusion, the results obtained showed that intense training caused a decreased expression of myostatin mRNA in white and red skeletal muscles but an increase in cardiac muscle.

Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats.

CACCIANI, NICOLA;REGGIANI, CARLO;MASCARELLO, FRANCESCO;PATRUNO, MARCO VINCENZO
2006

Abstract

The aim of this study was to test the hypothesis that swimming training might impact differentially myostatin expression in skeletal muscles, depending on fibre type composition, and in cardiac muscle of rats. Myostatin expression was analysed by real time reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry of the red deep portion (mainly composed of slow and type II A fibres) and in the superficial, white portion (composed of fast type II X and II B fibres) of the gastrocnemius muscle in adult male Wistar rats: (i) subjected to two consecutive swimming bouts for 3 h; (ii) subjected to intensive swimming training for 4 weeks; and (iii) sedentary control rats. Myostatin mRNA content was in all cases higher in white than in red muscles. Two bouts of swimming did not alter myostatin expression, whereas swimming training for 4 weeks resulted in a significant reduction of myostatin mRNA contents, significant both in white and red muscles but more pronounced in white muscles. Western blot did not detect any change in the amount of myostatin protein. Immunohistochemistry showed that, in control rats, myostatin was localized in presumptive satellite cells of a few muscle fibres. After training, the number of myostatin-positive spots decreased significantly. Myostatin mRNA content in cardiac muscle was lower than in skeletal muscle and was significantly increased by swimming training. In conclusion, the results obtained showed that intense training caused a decreased expression of myostatin mRNA in white and red skeletal muscles but an increase in cardiac muscle.
2006
File in questo prodotto:
File Dimensione Formato  
Matsakas-Exp.Physiol.2006.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 516.19 kB
Formato Adobe PDF
516.19 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2432906
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 54
social impact