Phospholipid hydroperoxide glutathione peroxidase is a monomeric Se-peroxidase highly expressed in mammalian male germ cells. Its nuclear form, sperm nuclei glutathione peroxidase (snGPx), has been originally identified in maturating spermatozoa as a transcription product containing an alternative exon within the phospholipid hydroperoxide glutathione peroxidase gene. In this paper, we show that this form is inconstantly detectable in rat spermatozoa where a 20.0 and 25.9 kDa major forms are detected instead. These have been conclusively characterized. The N-terminus sequence of the 20.0 kDa form confirmed that the protein is identical to cytosolic form, suggesting diffusion into the nucleus. The 25.9 kDa protein represented a truncated form of the previously described nuclear snGPx, lacking the basic nuclear localization signal. This protein is present in two forms differing from each other by the presence of an N-terminal methionine. The presence of traces of the larger snGPx form suggests that exhaustive proteolytic processing of the precursor produces the 25.9 kDa enzyme, although the alternate use of a downstream ATG, at least in rodents, could not be unequivocally ruled out.
Titolo: | Primary structure of the nuclear forms of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat spermatozoa |
Autori: | |
Data di pubblicazione: | 2005 |
Rivista: | |
Abstract: | Phospholipid hydroperoxide glutathione peroxidase is a monomeric Se-peroxidase highly expressed in mammalian male germ cells. Its nuclear form, sperm nuclei glutathione peroxidase (snGPx), has been originally identified in maturating spermatozoa as a transcription product containing an alternative exon within the phospholipid hydroperoxide glutathione peroxidase gene. In this paper, we show that this form is inconstantly detectable in rat spermatozoa where a 20.0 and 25.9 kDa major forms are detected instead. These have been conclusively characterized. The N-terminus sequence of the 20.0 kDa form confirmed that the protein is identical to cytosolic form, suggesting diffusion into the nucleus. The 25.9 kDa protein represented a truncated form of the previously described nuclear snGPx, lacking the basic nuclear localization signal. This protein is present in two forms differing from each other by the presence of an N-terminal methionine. The presence of traces of the larger snGPx form suggests that exhaustive proteolytic processing of the precursor produces the 25.9 kDa enzyme, although the alternate use of a downstream ATG, at least in rodents, could not be unequivocally ruled out. |
Handle: | http://hdl.handle.net/11577/2433697 |
Appare nelle tipologie: | 01.01 - Articolo in rivista |