The solvation of tetramethylommonium chloride (Me4NCl) and tetra-n-butylammonium chloride (Bu4NCl) in water-acetonitrile mixtures was investigated by mass spectrometry of clusters isolated from the solution. As for as the positive ions are concerned, clusters composed of alkylammonium ions and acetonitrile molecules only were observed, even for mixtures with high water content. In contrast, for the negative ions, clusters composed of chloride with both water and/or acetonitrile molecules were observed. For the smaller system (Me4NCl) we performed quantum chemical calculations and molecular dynamics simulations. It was found that even though water is present in the solvation shelf of Me4N+ only acetonitrile has a strong electrostatic interaction with the cation. Water molecules around Me4N+ form hydrogen bonds with other water molecules, and they interact with Me4N+ mainly via dispersive interactions. These results indicate that Me4N+ behaves like a hydrophobic solute. On the other hand, the interaction of Cl- with water and acetonitrile is of comparable strength and, in both cases, the electrostatic interaction dominates. Herein we demonstrate experimentally and theoretically that positive and negative ions give rise to characteristic solvation structures in mixed solvents: even a relatively small organic cation, such as Me4N+, exhibits a hydrophobic-like solvation shell.

Solvation of tetraalkylammonium chlorides in acetonitrile-water mixtures: mass spectrometry and molecular dynamics simulations

SAIELLI G;SCORRANO, GIANFRANCO;BAGNO, ALESSANDRO;
2005

Abstract

The solvation of tetramethylommonium chloride (Me4NCl) and tetra-n-butylammonium chloride (Bu4NCl) in water-acetonitrile mixtures was investigated by mass spectrometry of clusters isolated from the solution. As for as the positive ions are concerned, clusters composed of alkylammonium ions and acetonitrile molecules only were observed, even for mixtures with high water content. In contrast, for the negative ions, clusters composed of chloride with both water and/or acetonitrile molecules were observed. For the smaller system (Me4NCl) we performed quantum chemical calculations and molecular dynamics simulations. It was found that even though water is present in the solvation shelf of Me4N+ only acetonitrile has a strong electrostatic interaction with the cation. Water molecules around Me4N+ form hydrogen bonds with other water molecules, and they interact with Me4N+ mainly via dispersive interactions. These results indicate that Me4N+ behaves like a hydrophobic solute. On the other hand, the interaction of Cl- with water and acetonitrile is of comparable strength and, in both cases, the electrostatic interaction dominates. Herein we demonstrate experimentally and theoretically that positive and negative ions give rise to characteristic solvation structures in mixed solvents: even a relatively small organic cation, such as Me4N+, exhibits a hydrophobic-like solvation shell.
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2435206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact