Electron-beam welding (EBW) is commonly employed in the aeroengine industry for the welding of high integrity components, fabricated from high-strength superalloys. For such applications, it is important to predict distortions and residual stresses induced by the process. Melt run trials have been carried out on nickel-base superalloy Inconel 706 plates using the EBW technique in order to analyse the effects of welding parameters on geometrical characteristics and microstructure of the bead. Butt-welded plates have been then investigated by means of tensile tests, microstructural analysis, and X-ray diffraction measurements. A finite element model of the process has been set up using an uncoupled thermal–mechanical analysis. The heat source was modelled using a superimposition of a spherical and a conical shape heat source with Gaussian power density distribution in order to reproduce the nail shape of the fusion zone (FZ). The parameters of the source were chosen so that the model would match with experimentally determined weld pool shape and temperatures, measured with thermocouples. Subsequently, the thermal analysis was used to drive the non-linear mechanical analysis. The predicted residual stresses were then compared with X-ray diffraction measurements. It was found that the correct thermal and residual stresses prediction is influenced by the shape of the fusion zone, the highest thermal tensile stress arising under the nailhead of the fusion zone where microfissuring can be observed.

Investigation of electron-beam welding in wrought Inconel 706 - experimental and numerical analysis

FERRO, PAOLO;ZAMBON, ANDREA;BONOLLO, FRANCO
2005

Abstract

Electron-beam welding (EBW) is commonly employed in the aeroengine industry for the welding of high integrity components, fabricated from high-strength superalloys. For such applications, it is important to predict distortions and residual stresses induced by the process. Melt run trials have been carried out on nickel-base superalloy Inconel 706 plates using the EBW technique in order to analyse the effects of welding parameters on geometrical characteristics and microstructure of the bead. Butt-welded plates have been then investigated by means of tensile tests, microstructural analysis, and X-ray diffraction measurements. A finite element model of the process has been set up using an uncoupled thermal–mechanical analysis. The heat source was modelled using a superimposition of a spherical and a conical shape heat source with Gaussian power density distribution in order to reproduce the nail shape of the fusion zone (FZ). The parameters of the source were chosen so that the model would match with experimentally determined weld pool shape and temperatures, measured with thermocouples. Subsequently, the thermal analysis was used to drive the non-linear mechanical analysis. The predicted residual stresses were then compared with X-ray diffraction measurements. It was found that the correct thermal and residual stresses prediction is influenced by the shape of the fusion zone, the highest thermal tensile stress arising under the nailhead of the fusion zone where microfissuring can be observed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2435231
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 84
social impact