The class of fractionally integrated generalised autoregressive conditional heteroskedastic (FIGARCH) models is extended for modelling the periodic long-range dependence typically shown by volatility of most intra-daily financial returns. The proposed class of models introduces generalised periodic long-memory filters, based on Gegenbauer polynomials, into the equation describing the time-varying volatility of standard GARCH models. A fitting procedure is illustrated and its performance is evaluated by means of Monte Carlo simulations. The effectiveness of these models in describing periodic long-memory volatility patterns is shown through an empirical application to the Euro–Dollar intra-daily exchange rate.

Generalised long-memory GARCH models for intra-daily volatility

BORDIGNON, SILVANO;CAPORIN, MASSIMILIANO;LISI, FRANCESCO
2007

Abstract

The class of fractionally integrated generalised autoregressive conditional heteroskedastic (FIGARCH) models is extended for modelling the periodic long-range dependence typically shown by volatility of most intra-daily financial returns. The proposed class of models introduces generalised periodic long-memory filters, based on Gegenbauer polynomials, into the equation describing the time-varying volatility of standard GARCH models. A fitting procedure is illustrated and its performance is evaluated by means of Monte Carlo simulations. The effectiveness of these models in describing periodic long-memory volatility patterns is shown through an empirical application to the Euro–Dollar intra-daily exchange rate.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/2436174
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact