Snake presynaptic phospholipase A2 neurotoxins (SPANs) bind to the presynaptic membrane and hydrolyze phosphatidylcholine with generation of lysophosphatidylcholine (LysoPC) and fatty acid (FA). The LysoPC+FA mixture promotes membrane fusion, inducing the exocytosis of the ready-to-release synaptic vesicles. However, also the reserve pool of synaptic vesicles disappears from nerve terminals intoxicated with SPAN or LysoPC+FA. Here, we show that LysoPC+FA and SPANs cause a large influx of extracellular calcium into swollen nerve terminals, which accounts for the extensive synaptic vesicle release. This is paralleled by the change of morphology and the collapse of membrane potential of mitochondria within nerve bulges. These results complete the picture of events occurring at nerve terminals intoxicated by SPANs and define the LysoPC+FA lipid mixture as a novel and effective agonist of synaptic vesicle release.

Calcium influx and mitochondrial alterations at synapses exposed to snake neurotoxins or their phospholipid hydrolysis products

RIGONI, MICHELA;PIZZO, PAOLA;CACCIN, PAOLA;ROSSETTO, ORNELLA;POZZAN, TULLIO;MONTECUCCO, CESARE
2007

Abstract

Snake presynaptic phospholipase A2 neurotoxins (SPANs) bind to the presynaptic membrane and hydrolyze phosphatidylcholine with generation of lysophosphatidylcholine (LysoPC) and fatty acid (FA). The LysoPC+FA mixture promotes membrane fusion, inducing the exocytosis of the ready-to-release synaptic vesicles. However, also the reserve pool of synaptic vesicles disappears from nerve terminals intoxicated with SPAN or LysoPC+FA. Here, we show that LysoPC+FA and SPANs cause a large influx of extracellular calcium into swollen nerve terminals, which accounts for the extensive synaptic vesicle release. This is paralleled by the change of morphology and the collapse of membrane potential of mitochondria within nerve bulges. These results complete the picture of events occurring at nerve terminals intoxicated by SPANs and define the LysoPC+FA lipid mixture as a novel and effective agonist of synaptic vesicle release.
File in questo prodotto:
File Dimensione Formato  
Rigoni_JBC2007.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 508.7 kB
Formato Adobe PDF
508.7 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2436632
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 57
  • OpenAlex ND
social impact