Motivation: Proteins with solenoid repeats evolve more quickly than non-repetitive ones and their periodicity may be rapidly hidden at sequence level, while still evident in structure. In order to identify these repeats, we propose here a novel method based on a metric characterizing amino-acid properties (polarity, secondary structure, molecular volume, codon diversity, electric charge) using five previously derived numerical functions. Results: The five spectra of the candidate sequences coding for structural repeats, obtained by Discrete Fourier Transform (DFT), show common features allowing determination of repeat periodicity with excellent results. Moreover it is possible to introduce a phase space parameterized by two quantities related to the Fourier spectra which allow for a clear distinction between a non-homologous set of globular proteins and proteins with solenoid repeats. The DFT method is shown to be competitive with other state of the art methods in the detection of solenoid structures, while improving its performance especially in the identification of periodicities, since it is able to recognize the actual repeat length in most cases. Moreover it highlights the relevance of local structural propensities in determining solenoid repeats.

REPETITA: detection and discrimination of the periodicity of protein solenoid repeats by discrete Fourier transform

TROVATO, ANTONIO;SENO, FLAVIO;TOSATTO, SILVIO
2009

Abstract

Motivation: Proteins with solenoid repeats evolve more quickly than non-repetitive ones and their periodicity may be rapidly hidden at sequence level, while still evident in structure. In order to identify these repeats, we propose here a novel method based on a metric characterizing amino-acid properties (polarity, secondary structure, molecular volume, codon diversity, electric charge) using five previously derived numerical functions. Results: The five spectra of the candidate sequences coding for structural repeats, obtained by Discrete Fourier Transform (DFT), show common features allowing determination of repeat periodicity with excellent results. Moreover it is possible to introduce a phase space parameterized by two quantities related to the Fourier spectra which allow for a clear distinction between a non-homologous set of globular proteins and proteins with solenoid repeats. The DFT method is shown to be competitive with other state of the art methods in the detection of solenoid structures, while improving its performance especially in the identification of periodicities, since it is able to recognize the actual repeat length in most cases. Moreover it highlights the relevance of local structural propensities in determining solenoid repeats.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2436638
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 52
social impact