This paper presents the localization of a mobile robot while simultaneously mapping the position of the nodes of a Wireless Sensor Network using only range measurements. The robot can estimate the distance to nearby nodes of the Wireless Sensor Network by measuring the Received Signal Strength Indicator (RSSI) of the received radio messages. The RSSI measure is very noisy, especially in an indoor environment due to interference and reflections of the radio signals. We adopted an Extended Kalman Filter SLAM algorithm to integrate RSSI measurements from the different nodes over time, while the robot moves in the environment. A simple pre-processing filter helps in reducing the RSSI variations due to interference and reflections. Successful experiments are reported in which an average localization error less than 1 m is obtained when the SLAM algorithm has no a priori knowledge on the wireless node positions, while a localization error less than 0.5 m can be achieved when the position of the node is initialized close to the their actual position. These results are obtained using a generic path loss model for the transmission channel. Moreover, no internode communication is necessary in the WSN. This can save energy and enables to apply the proposed system also to fully disconnected networks.

Range-only SLAM with a Mobile Robot and a Wireless Sensor Networks

MENEGATTI, EMANUELE;ZANELLA, ANDREA;ZORZI, FRANCESCO;PAGELLO, ENRICO
2009

Abstract

This paper presents the localization of a mobile robot while simultaneously mapping the position of the nodes of a Wireless Sensor Network using only range measurements. The robot can estimate the distance to nearby nodes of the Wireless Sensor Network by measuring the Received Signal Strength Indicator (RSSI) of the received radio messages. The RSSI measure is very noisy, especially in an indoor environment due to interference and reflections of the radio signals. We adopted an Extended Kalman Filter SLAM algorithm to integrate RSSI measurements from the different nodes over time, while the robot moves in the environment. A simple pre-processing filter helps in reducing the RSSI variations due to interference and reflections. Successful experiments are reported in which an average localization error less than 1 m is obtained when the SLAM algorithm has no a priori knowledge on the wireless node positions, while a localization error less than 0.5 m can be achieved when the position of the node is initialized close to the their actual position. These results are obtained using a generic path loss model for the transmission channel. Moreover, no internode communication is necessary in the WSN. This can save energy and enables to apply the proposed system also to fully disconnected networks.
2009
Proc. of IEEE/RAS International Conference on Robotics and Automation (ICRA-2009)
9781424427888
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2437716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 109
  • ???jsp.display-item.citation.isi??? 9
social impact