Thermal comfort and energy saving are objectives of key significance that building design must meet. Since a low energy building can be obtained as a result of the good realization of all its components, roofs call for particular attention as they represent a large part of a building’s total surface area. In this paper the benefit of using ventilated roofs for reducing summer cooling load is investigated. The investigation has been conducted comparing a ventilated roof assembly with different channel heights (3 cm, 5 cm, and 10 cm) to the same non ventilated structure, assuming buoyancy-driven airflow. Direct comparison between the open and the closed roof structures as a function of different cavity heights and outside environmental conditions is presented. To provide fundamental information about the thermal performance of these building envelope components, the computational fluid dynamics (CFD) model has been used to develop correlations for the characterization of the airflow and heat transfer phenomena in the ventilation cavity which have been implemented in a whole year energy simulation software. The present analysis shows a conflicting discrepancy among the indexes of performance describing the actual energy saving potential of a ventilated roof.

CFD modelling and thermal performance analysis of a wooden ventilated roof structure

VILLI, GIACOMO;DE CARLI, MICHELE
2009

Abstract

Thermal comfort and energy saving are objectives of key significance that building design must meet. Since a low energy building can be obtained as a result of the good realization of all its components, roofs call for particular attention as they represent a large part of a building’s total surface area. In this paper the benefit of using ventilated roofs for reducing summer cooling load is investigated. The investigation has been conducted comparing a ventilated roof assembly with different channel heights (3 cm, 5 cm, and 10 cm) to the same non ventilated structure, assuming buoyancy-driven airflow. Direct comparison between the open and the closed roof structures as a function of different cavity heights and outside environmental conditions is presented. To provide fundamental information about the thermal performance of these building envelope components, the computational fluid dynamics (CFD) model has been used to develop correlations for the characterization of the airflow and heat transfer phenomena in the ventilation cavity which have been implemented in a whole year energy simulation software. The present analysis shows a conflicting discrepancy among the indexes of performance describing the actual energy saving potential of a ventilated roof.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2437862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 29
social impact