A multicomponent membrane based on polysulfone nanofibers and titanium dioxide nanoparticles is produced by the coupling of electrospinning and electrospraying techniques. The manufactured product can satisfy a number of conflicting requirements begetting its technical and functional versatility as well as the reliability of the process. As nanoparticle dispersion is a critical issue in nanoparticle technology, their distribution and morphology have been extensively studied before and after electrospraying, and process optimization has been carried out to obtain nanoparticles uniformly spread over electrospun nanofibers. These membranes have been proved to be a good candidate for supported catalysis due to the photocatalytic activity of TiO2, tested for degradation of CEPS, a mustard agent simulant. At the same time, an effective improvement in filtering properties in terms of pressure drop has also been studied.

Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles

ROSO, MARTINA;MODESTI, MICHELE
2008

Abstract

A multicomponent membrane based on polysulfone nanofibers and titanium dioxide nanoparticles is produced by the coupling of electrospinning and electrospraying techniques. The manufactured product can satisfy a number of conflicting requirements begetting its technical and functional versatility as well as the reliability of the process. As nanoparticle dispersion is a critical issue in nanoparticle technology, their distribution and morphology have been extensively studied before and after electrospraying, and process optimization has been carried out to obtain nanoparticles uniformly spread over electrospun nanofibers. These membranes have been proved to be a good candidate for supported catalysis due to the photocatalytic activity of TiO2, tested for degradation of CEPS, a mustard agent simulant. At the same time, an effective improvement in filtering properties in terms of pressure drop has also been studied.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2438646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 71
social impact