We design and characterize spherical gold nanoparticles, which are covalently linked to and completely covered by 3(10)-helical peptides. These helices provide a scaffold to place (13)C=O isotope labels at defined distances from the gold surface, which we employ as local thermometers. Probing these reporter groups with transient infrared spectroscopy, we monitor the vibrational energy flow across the peptide capping layer following excitation of the nanoparticle plasmon resonance.

Vibrational Energy Transport through a Capping Layer of Appropriately Designed Peptide Helices over Gold Nanoparticles

MORETTO, ALESSANDRO;TONIOLO, CLAUDIO;
2010

Abstract

We design and characterize spherical gold nanoparticles, which are covalently linked to and completely covered by 3(10)-helical peptides. These helices provide a scaffold to place (13)C=O isotope labels at defined distances from the gold surface, which we employ as local thermometers. Probing these reporter groups with transient infrared spectroscopy, we monitor the vibrational energy flow across the peptide capping layer following excitation of the nanoparticle plasmon resonance.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2440307
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 33
social impact